Sema3A relieves neuropathic pain by reducing eIF2α phosphorylation via suppressing PI3K/Akt/mTOR pathway

被引:0
|
作者
Hu, Tingting [1 ,3 ]
Pang, Miaoyi [1 ]
Sun, Qingyu [1 ]
Gou, Yu [4 ]
Liu, Jing [1 ]
Wang, Xiaotong [1 ]
Ma, Yiran [1 ]
Chen, Wen [1 ]
Wei, Chao [1 ]
Liu, Meng [1 ]
Ding, Yumeng [1 ]
Zhang, Yurui [1 ]
Liu, Dianxin [1 ]
Wu, Weihua [2 ]
Wang, Peipei [1 ]
Zhu, Hongwei [5 ]
Li, Qian [2 ]
Yang, Fei [1 ]
机构
[1] Capital Med Univ, Sch Basic Med Sci, Dept Neurobiol, Beijing 100069, Peoples R China
[2] Capital Med Univ, Sch Basic Med Sci, Dept Biochem & Mol Biol, Beijing 100069, Peoples R China
[3] Tianjin Huanhu Hosp, Tianjin Neurosurg Inst, Tianjin Key Lab Cerebral Vasc & Neurodegenerat Dis, Tianjin 300222, Peoples R China
[4] Tianjin Univ, Tianjin Hosp, Dept Orthopaed Surg, Tianjin 300299, Peoples R China
[5] Capital Med Univ, Xuanwu Hosp, Beijing Inst Funct Neurosurg, Beijing 100053, Peoples R China
来源
JOURNAL OF PAIN | 2025年 / 30卷
基金
中国国家自然科学基金;
关键词
Neuropathic pain; Eukaryotic initiation factor 2 alpha; Semaphorin3A; Dorsal Root Ganglion; PERIPHERAL MONONEUROPATHY; RAT; HYPERALGESIA; TRANSLATION; NEUROPILIN; RECEPTOR; NEURONS;
D O I
10.1016/j.jpain.2025.105374
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Primary sensory neurons serve as a critical link between the peripheral nervous system (PNS) and the central nervous system (CNS). They represent the initial neural tissue responsible for transmitting sensations and pain. In case where peripheral nerves are injured, nerve fiber regeneration can lead to severe pain. Semaphorin3A (Sema3A), an axon guidance molecule that can be secreted by Schwann cells, has been shown to effectively inhibit the regeneration of embryonic and adult dorsal root ganglion (DRG). However, its role in neuropathic pain and the underlying mechanisms remain unexplored. This study employed a chronic constriction injury (CCI) model of neuropathic pain in mice. We observed that increased expression of Sema3A could alleviate both mechanical and heat nociceptive behaviors in model mice. By overexpressing Sema3A in ipsilateral DRG neurons via DRG injection, we found that the phosphorylation of the PI3K/Akt/mTOR signaling pathway and eukaryotic initiation factor 2 alpha (eIF2 alpha) was inhibited, thereby inhibiting pain. eIF2 alpha is a translation initiation factor and its phosphorylation can regulate global translation. The inhibition of eIF2 alpha phosphorylation through PKR and PERK inhibitors also reduced the expression of ion channels and ultimately alleviated neuropathic pain. We found that Sema3A could suppress the phosphorylation of eIF2 alpha by inhibiting the PI3K/AKT/mTOR pathway, thus affecting pain perception. These findings suggested that alterations in Sema3A expression and eIF2 alpha phosphorylation were involved in the development of neuropathic pain, providing potential new targets for clinical pain-relief drug development. Perspective: The expression of Sema3A in DRG neurons was decreased following peripheral nerve injury. Elevating Sema3A levels alleviated neuropathic pain by inhibiting the PI3K/Akt/mTOR pathway and eIF2 alpha phosphorylation, thus affecting ion channel expression in DRG of neuropathic pain model animals. This highlighted Sema3A as potential therapeutic targets for pain relief.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] The PI3K/Akt/mTOR Pathway as Therapeutic Target in Neuroblastoma
    Fulda, S.
    CURRENT CANCER DRUG TARGETS, 2009, 9 (06) : 729 - 737
  • [32] Targeting the mTOR/AKT/PI3K pathway in paediatric malignancies
    Pearson, A.
    EUROPEAN JOURNAL OF CANCER, 2013, 49 : S74 - S74
  • [33] AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV
    Bhatt, Aadra P.
    Damania, Blossom
    FRONTIERS IN IMMUNOLOGY, 2013, 3
  • [34] Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma
    Zhou, Qian
    Lui, Vivian W. Y.
    Yeo, Winnie
    FUTURE ONCOLOGY, 2011, 7 (10) : 1149 - 1167
  • [35] Targeting the PI3K/AKT/mTOR Signaling Pathway in Medulloblastoma
    Dimitrova, V.
    Arcaro, A.
    CURRENT MOLECULAR MEDICINE, 2015, 15 (01) : 82 - 93
  • [36] Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma
    Sun, Eun Jin
    Wankell, Miriam
    Palamuthusingam, Pranavan
    McFarlane, Craig
    Hebbard, Lionel
    BIOMEDICINES, 2021, 9 (11)
  • [37] Electroacupuncture ameliorated neuropathic pain induced by chronic constriction injury via inactivation of PI3K/AKT pathway
    Zhao, Yu
    He, Wenxue
    Wu, Yong
    Liu, Yang
    Yang, Chang
    Wu, Linzhi
    Liu, Bin
    NEUROLOGY ASIA, 2019, 24 (04) : 317 - 326
  • [38] PI3K/AKT/mTOR pathway in tumor progression of oligodendrogliomas
    Lisi, Lucia
    TRANSLATIONAL CANCER RESEARCH, 2020, 9 (04) : 2161 - 2163
  • [39] PI3K/Akt/mTOR pathway as a target for cancer therapy
    Morgensztern, D
    McLeod, HL
    ANTI-CANCER DRUGS, 2005, 16 (08) : 797 - 803
  • [40] PI3K/AKT/mTOR pathway in pulmonary carcinoid tumours
    Zhang, Zixuan
    Wang, Mengzhao
    ONCOLOGY LETTERS, 2017, 14 (02) : 1373 - 1378