Fabrication of graphene oxide/silk protein core-sheath aerogel fibers for thermal management

被引:0
|
作者
Xu, Wenjing [1 ]
Ren, Chencheng [1 ]
Wang, Zhe [1 ]
Lochab, Bimlesh [2 ]
Liu, Jian [1 ,3 ,4 ,5 ,6 ]
Zhang, Yuanyuan [1 ,3 ]
Wu, Limin [1 ,5 ,6 ,7 ,8 ]
机构
[1] Inner Mongolia Univ, Coll Chem & Chem Engn, Hohhot 010021, Inner Mongolia, Peoples R China
[2] Shiv Nadar Inst Eminence, Sch Nat Sci, Dept Chem, Mat Chem Lab, Gautam Buddha Nagar 201314, Uttar Pradesh, India
[3] Inner Mongolia Univ, Inner Mongolia Key Lab Rare Earth Catalysis, Hohhot 010021, Inner Mongolia, Peoples R China
[4] Univ Surrey, DICP Surrey Joint Ctr Future Mat, Dept Chem & Proc Engn, Guildford GU2 7XH, Surrey, England
[5] Inner Mongolia Univ, Coll Energy Mat & Chem, Hohhot 010021, Inner Mongolia, Peoples R China
[6] Inner Mongolia Univ, Inst Green Chem & Environm Sci, Hohhot 010021, Inner Mongolia, Peoples R China
[7] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[8] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-CHANGE COMPOSITES; STORAGE;
D O I
10.1039/d5ta00580a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effective thermal management in advancing electronics is hindered by phase change material (PCM) leakage. This study introduces coaxial wet spinning to encapsulate polyethylene glycol (PEG) within a graphene oxide/silk fibroin (GO/SF) core sheathed by thermoplastic polyurethane (TPU), forming a robust core-shell structure. The resulting GO/SF@TPU aerogel fibers exhibit exceptional tensile strength (17.21 MPa) and toughness (136.8 MJ m-3) while retaining shape stability under varying humidity. Subsequent PEG impregnation yields GO/SF@TPU-PEG composite phase change fibers (PCFs) with high latent heat (86.66 J g-1) and low thermal conductivity (0.0863 W m-1 K-1), enabling efficient thermal storage and insulation. These PCFs maintain a 26.4 degrees C temperature gradient at 100 degrees C, demonstrating superior thermal regulation. Combining mechanical durability, humidity resistance, and thermal efficiency, the fibers are ideal for smart textiles and wearable devices requiring lightweight, sustainable thermal management. This innovation addresses PCM leakage challenges and advances eco-friendly thermal insulation solutions, showcasing significant potential for next-generation electronics and energy-efficient applications.
引用
收藏
页码:7081 / 7090
页数:10
相关论文
共 50 条
  • [41] Electrospun Core-Sheath Fibers with a Uniformly Aligned Polymer Network Liquid Crystal (PNLC)
    Zhang, Zhibo
    Bolshakov, Andrey
    Han, Jiecai
    Zhu, Jiaqi
    Yang, Kun -Lin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (11) : 14800 - 14809
  • [42] Core-sheath organic-inorganic hybrid electrospun fibers for organophosphorus heterogeneous catalysis
    Netto, Jorge Fernandes Z.
    Miguez, Flavio B.
    Bahia, Samara B. B. B.
    Bolais-Ramos, Lucas G.
    Verano-Braga, Thiago
    Trigueiro, Joao P. C.
    Nobuyasu, Roberto S.
    Brandao, Tiago A. S.
    De Sousa, Frederico B.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [43] Core-sheath fibers composed of F-doped nickel hydroxide nanorods and graphene fibers for effective fiber-shaped nonenzymatic glucose sensors
    Zhu, Zhengwei
    Wu, Yuntao
    Yang, Junhe
    Xue, Yuhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 889
  • [44] Toughening of Epoxy Resin with Functionalized Core-Sheath Structured PAN/SBS Electrospun Fibers
    Guo, Tanghua
    Zhou, Zhi
    Guo, Honglei
    Xiao, Guohua
    Tang, Xinglei
    Peng, Mao
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (23)
  • [45] Synthesis of core-sheath structured fibers of SnO2/carbon composites by electrospinning
    Makinose, Yuki
    Asakura, Daisuke
    Matsuda, Hirofumi
    Hosono, Eiji
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2018, 126 (08) : 662 - 666
  • [46] Electrospun Zein/Polyoxyethylene Core-Sheath Ultrathin Fibers and Their Antibacterial Food Packaging Applications
    Jiang, Wenlai
    Zhao, Ping
    Song, Wenliang
    Wang, Menglong
    Yu, Deng-Guang
    BIOMOLECULES, 2022, 12 (08)
  • [47] POLY 582-A versatile strategy for the fabrication of core-sheath structured nanofiber yarns
    Li, Xinsong
    Yao, Chen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [48] Research on the drapability of the fabric consisted of core-sheath filaments/staple fibers composite yarns
    Yuan, X
    Yi, HL
    Yan, C
    SEN-I GAKKAISHI, 2006, 62 (02) : 25 - 28
  • [49] Single-polymer composites based on polylactide continuous core-sheath bicomponent fibers
    Marx, Boris
    Bostan, Lars
    Miene, Andrea
    May, David
    POLYMER TESTING, 2025, 142
  • [50] Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure
    Li, Wei
    Xu, Fujun
    Liu, Wei
    Gao, Yang
    Zhang, Kun
    Zhang, Xiaohua
    Qiu, Yiping
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 108 : 107 - 113