Fabrication of graphene oxide/silk protein core-sheath aerogel fibers for thermal management

被引:0
|
作者
Xu, Wenjing [1 ]
Ren, Chencheng [1 ]
Wang, Zhe [1 ]
Lochab, Bimlesh [2 ]
Liu, Jian [1 ,3 ,4 ,5 ,6 ]
Zhang, Yuanyuan [1 ,3 ]
Wu, Limin [1 ,5 ,6 ,7 ,8 ]
机构
[1] Inner Mongolia Univ, Coll Chem & Chem Engn, Hohhot 010021, Inner Mongolia, Peoples R China
[2] Shiv Nadar Inst Eminence, Sch Nat Sci, Dept Chem, Mat Chem Lab, Gautam Buddha Nagar 201314, Uttar Pradesh, India
[3] Inner Mongolia Univ, Inner Mongolia Key Lab Rare Earth Catalysis, Hohhot 010021, Inner Mongolia, Peoples R China
[4] Univ Surrey, DICP Surrey Joint Ctr Future Mat, Dept Chem & Proc Engn, Guildford GU2 7XH, Surrey, England
[5] Inner Mongolia Univ, Coll Energy Mat & Chem, Hohhot 010021, Inner Mongolia, Peoples R China
[6] Inner Mongolia Univ, Inst Green Chem & Environm Sci, Hohhot 010021, Inner Mongolia, Peoples R China
[7] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[8] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-CHANGE COMPOSITES; STORAGE;
D O I
10.1039/d5ta00580a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effective thermal management in advancing electronics is hindered by phase change material (PCM) leakage. This study introduces coaxial wet spinning to encapsulate polyethylene glycol (PEG) within a graphene oxide/silk fibroin (GO/SF) core sheathed by thermoplastic polyurethane (TPU), forming a robust core-shell structure. The resulting GO/SF@TPU aerogel fibers exhibit exceptional tensile strength (17.21 MPa) and toughness (136.8 MJ m-3) while retaining shape stability under varying humidity. Subsequent PEG impregnation yields GO/SF@TPU-PEG composite phase change fibers (PCFs) with high latent heat (86.66 J g-1) and low thermal conductivity (0.0863 W m-1 K-1), enabling efficient thermal storage and insulation. These PCFs maintain a 26.4 degrees C temperature gradient at 100 degrees C, demonstrating superior thermal regulation. Combining mechanical durability, humidity resistance, and thermal efficiency, the fibers are ideal for smart textiles and wearable devices requiring lightweight, sustainable thermal management. This innovation addresses PCM leakage challenges and advances eco-friendly thermal insulation solutions, showcasing significant potential for next-generation electronics and energy-efficient applications.
引用
收藏
页码:7081 / 7090
页数:10
相关论文
共 50 条
  • [21] Monolithic fabrication of nanochannels using core-sheath nanofibers as sacrificial mold
    Xu, Shiyou
    Zhao, Yi
    MICROFLUIDICS AND NANOFLUIDICS, 2011, 11 (03) : 359 - 365
  • [22] Preparation and Properties of Thermoresponsive and Conductive Composite Fibers with Core-Sheath Structure
    Lin, Mei-Fei
    Don, Trong-Ming
    Chang, Fang-Tzu
    Huang, Shih-Ru
    Chiu, Wen-Yen
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2016, 54 (09) : 1299 - 1307
  • [23] Core effect on mechanical properties of one dimensional electrospun core-sheath composite fibers
    Duan, Gaigai
    Jin, Minde
    Wang, Feng
    Greiner, Andreas
    Agarwal, Seema
    Jiang, Shaohua
    COMPOSITES COMMUNICATIONS, 2021, 25
  • [24] Flexible core-sheath thermochromic phase change fibers for temperature management and electrical/solar energy harvesting
    Niu, Zixuan
    Qi, Shengyang
    Shuaib, Suhaib Shuaib Adam
    Zuettel, Andreas
    Yuan, Weizhong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 226
  • [25] Electrospun polyethylene glycol/cellulose acetate phase change fibers with core-sheath structure for thermal energy storage
    Chen, Changzhong
    Zhao, Yiyang
    Liu, Wenmin
    RENEWABLE ENERGY, 2013, 60 : 222 - 225
  • [26] Enhanced diabetic wound healing by electrospun core-sheath fibers loaded with dimethyloxalylglycine
    Gao, W.
    Sun, L.
    Fu, X.
    Lin, Z.
    Xie, W.
    Zhang, W.
    Zhao, F.
    Chen, X.
    JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (02) : 277 - 288
  • [27] Current methodologies and approaches for the formation of core-sheath polymer fibers for biomedical applications
    Mahalingam, S.
    Matharu, R.
    Homer-Vanniasinkam, S.
    Edirisinghe, M.
    APPLIED PHYSICS REVIEWS, 2020, 7 (04)
  • [28] PEDOT/Polypyrrole Core-Sheath Fibers for Use as Conducting Polymer Artificial Muscles
    Bruns, Mathis
    Mehraeen, Shayan
    Martinez, Jose G.
    Cherif, Chokri
    Jager, Edwin W. H.
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (04) : 6901 - 6912
  • [29] Microfluidic Construction of Polypyrrole-Coated Core-Sheath Polyaniline/Graphene Hybrid Fibers with Excellent Properties for Wearable Supercapacitors
    Qiu, Yihan
    Ren, Yuting
    Jia, Xiaoyu
    Li, Hongwei
    Zhang, Mei
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (21) : 11189 - 11198
  • [30] Fabrication of Nanopores Polylactic Acid Microtubes by Core-Sheath Electrospinning for Capillary Vascularization
    Zhou, Yingge
    Sooriyaarachchi, Dilshan
    Tan, George Z.
    BIOMIMETICS, 2021, 6 (01)