Quasi-Monte Carlo integration over Rs based on digital nets

被引:1
|
作者
Dick, Josef [1 ]
Pillichshammer, Friedrich [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Linz, Inst Finanzmathemat & Angew Zahlentheorie, Altenbergerstr 69, A-4040 Linz, Austria
关键词
Numerical integration; Quasi-Monte Carlo; Digital nets; Digital shifts; Inversion method; SHIFTED LATTICE RULES; HIGH-DIMENSIONAL INTEGRATION; MULTIVARIATE INTEGRATION; STRONG TRACTABILITY; LOW-DISCREPANCY; POINT SETS; CONSTRUCTION; ALGORITHMS; SPACES; CONVERGENCE;
D O I
10.1016/j.cam.2024.116451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses p-weighted integration of functions over the 3-dimensional Euclidean space using quasi-Monte Carlo (QMC) rules combined with an inversion method, where the grobability density function (PDF) is of product form, i.e., a product of uni-variate PDFs for each coordinate in (1....s).<br /> The space of integrands is specified by means of fay-weighted p-norm, p >= 1, which involves coordinate weights y, the partial derivatives of order up to one of the integrands as well as additional weight functions y, and the PDFs 4. The coordinate weights y model the importance of different coordinates or groups of coordinates in the sense of Sloan and Wo & zacute;niakowski, and the weight functions y, are additional parameters of the space which describe the decay of the partial derivatives of the integrands. Fast decaying weights w(x) for x 100 enlarge the space. of functions with finite norm, but decrease the convergence rate of the worst-case epror of the proposed algorithms.<br /> Our algorithms for integration use digitally shifted digital nets in combination with an inversion method. We study the (root) mean squared worst-case error with respect to random digital shifts. The obtained error bounds depend on the choice of weight functions, and coordinate weights y. Under certain conditions on y, these bounds hold uniformly for all dimensions s.<br /> Numerical experiments demonstrate the effectiveness of the proposed algorithms.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets
    Cristea, Ligia L.
    Dick, Josef
    Leobacher, Gunther
    Pillichshammer, Friedrich
    NUMERISCHE MATHEMATIK, 2007, 105 (03) : 413 - 455
  • [42] Population Quasi-Monte Carlo
    Huang, Chaofan
    Joseph, V. Roshan
    Mak, Simon
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 695 - 708
  • [43] Quasi-Monte Carlo Software
    Choi, Sou-Cheng T.
    Hickernell, Fred J.
    Jagadeeswaran, Rathinavel
    McCourt, Michael J.
    Sorokin, Aleksei G.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 23 - 47
  • [44] Langevin Quasi-Monte Carlo
    Liu, Sifan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [45] The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets
    Ligia L. Cristea
    Josef Dick
    Gunther Leobacher
    Friedrich Pillichshammer
    Numerische Mathematik, 2007, 105 : 413 - 455
  • [46] Empirically Estimating Error of Integration by Quasi-Monte Carlo Method
    Antonov, A. A.
    Ermakov, S. M.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2014, 47 (01) : 1 - 8
  • [47] On quasi-Monte Carlo integrations
    Sobol, IM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 103 - 112
  • [48] Density Estimation by Monte Carlo and Quasi-Monte Carlo
    L'Ecuyer, Pierre
    Puchhammer, Florian
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 3 - 21
  • [49] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257
  • [50] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13