Quasi-Monte Carlo integration over Rs based on digital nets

被引:1
|
作者
Dick, Josef [1 ]
Pillichshammer, Friedrich [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Linz, Inst Finanzmathemat & Angew Zahlentheorie, Altenbergerstr 69, A-4040 Linz, Austria
关键词
Numerical integration; Quasi-Monte Carlo; Digital nets; Digital shifts; Inversion method; SHIFTED LATTICE RULES; HIGH-DIMENSIONAL INTEGRATION; MULTIVARIATE INTEGRATION; STRONG TRACTABILITY; LOW-DISCREPANCY; POINT SETS; CONSTRUCTION; ALGORITHMS; SPACES; CONVERGENCE;
D O I
10.1016/j.cam.2024.116451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses p-weighted integration of functions over the 3-dimensional Euclidean space using quasi-Monte Carlo (QMC) rules combined with an inversion method, where the grobability density function (PDF) is of product form, i.e., a product of uni-variate PDFs for each coordinate in (1....s).<br /> The space of integrands is specified by means of fay-weighted p-norm, p >= 1, which involves coordinate weights y, the partial derivatives of order up to one of the integrands as well as additional weight functions y, and the PDFs 4. The coordinate weights y model the importance of different coordinates or groups of coordinates in the sense of Sloan and Wo & zacute;niakowski, and the weight functions y, are additional parameters of the space which describe the decay of the partial derivatives of the integrands. Fast decaying weights w(x) for x 100 enlarge the space. of functions with finite norm, but decrease the convergence rate of the worst-case epror of the proposed algorithms.<br /> Our algorithms for integration use digitally shifted digital nets in combination with an inversion method. We study the (root) mean squared worst-case error with respect to random digital shifts. The obtained error bounds depend on the choice of weight functions, and coordinate weights y. Under certain conditions on y, these bounds hold uniformly for all dimensions s.<br /> Numerical experiments demonstrate the effectiveness of the proposed algorithms.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Error reduction techniques in quasi-Monte Carlo integration
    Ökten, G
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (7-8) : 61 - 69
  • [32] Quasi-Monte Carlo integration on the grid for sensitivity studies
    Emanouil Atanassov
    Aneta Karaivanova
    Todor Gurov
    Sofiya Ivanovska
    Mariya Durchova
    Dimitar Sl. Dimitrov
    Earth Science Informatics, 2010, 3 : 289 - 296
  • [33] Computational Higher Order Quasi-Monte Carlo Integration
    Gantner, Robert N.
    Schwab, Christoph
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 271 - 288
  • [34] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [35] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [36] A quasi-monte carlo scheme using nets for a linear boltzmann equation
    Laboratoire de Mathématiques, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac cedex, France
    SIAM J Numer Anal, 1 (51-70):
  • [37] A quasi-Monte Carlo scheme using nets for a linear Boltzmann equation
    Lecot, C
    Coulibaly, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 51 - 70
  • [38] An adaptive approach to cube-based quasi-Monte Carlo integration on Rd
    Pillards, Tim
    Vandewoestyne, Bart
    Cools, Ronald
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (06) : 1104 - 1117
  • [39] Quasi-Monte Carlo algorithms for unbounded, weighted integration problems
    Hartinger, E
    Kainhofer, RF
    Tichy, RF
    JOURNAL OF COMPLEXITY, 2004, 20 (05) : 654 - 668
  • [40] High-dimensional integration: The quasi-Monte Carlo way
    Dick, Josef
    Kuo, Frances Y.
    Sloan, Ian H.
    ACTA NUMERICA, 2013, 22 : 133 - 288