Byzantine-Robust Online and Offline Distributed Reinforcement Learning

被引:0
|
作者
Chen, Yiding [1 ]
Zhang, Xuezhou [2 ]
Zhang, Kaiqing [3 ]
Wang, Mengdi [2 ]
Zhu, Xiaojin [1 ]
机构
[1] Univ Wisconsin Madison, Madison, WI 53707 USA
[2] Princeton Univ, Princeton, NJ USA
[3] Univ Maryland College Pk, College Pk, MD USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider a distributed reinforcement learning setting where multiple agents separately explore the environment and communicate their experiences through a central server. However, afraction of agents are adversarial and can report arbitrary fake information. Critically, these adversarial agents can collude and their fake data can be of any sizes. We desire to robustly identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents. Our main technical contribution is COW, a novel algorithm for the robust mean estimation from batches problem, that can handle arbitrary batch sizes. Building upon this new estimator, in the offline setting, we design a Byzantine-robust distributed pessimistic value iteration algorithm; in the online setting, we design a Byzantine-robust distributed optimistic value iteration algorithm. Both algorithms obtain near-optimal sample complexities and achieve superior robustness guarantee than prior works.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Byzantine-Robust Aggregation in Federated Learning Empowered Industrial IoT
    Li, Shenghui
    Ngai, Edith
    Voigt, Thiemo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1165 - 1175
  • [42] FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping
    Cao, Xiaoyu
    Fang, Minghong
    Liu, Jia
    Gong, Neil Zhenqiang
    28TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2021), 2021,
  • [43] An Experimental Study of Byzantine-Robust Aggregation Schemes in Federated Learning
    Li, Shenghui
    Ngai, Edith
    Voigt, Thiemo
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 975 - 988
  • [44] Lightweight Byzantine-Robust and Privacy-Preserving Federated Learning
    Lu, Zhi
    Lu, Songfeng
    Cui, Yongquan
    Wu, Junjun
    Nie, Hewang
    Xiao, Jue
    Yi, Zepu
    EURO-PAR 2024: PARALLEL PROCESSING, PART II, EURO-PAR 2024, 2024, 14802 : 274 - 287
  • [45] Online Multi-Agent Decentralized Byzantine-robust Gradient Estimation
    Reiffers-Masson A.
    Amigo I.
    Performance Evaluation Review, 2023, 50 (04): : 38 - 40
  • [46] Byzantine-Robust Federated Learning with Variance Reduction and Differential Privacy
    Zhang, Zikai
    Hu, Rui
    2023 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY, CNS, 2023,
  • [47] SEAR: Secure and Efficient Aggregation for Byzantine-Robust Federated Learning
    Zhao, Lingchen
    Jiang, Jianlin
    Feng, Bo
    Wang, Qian
    Shen, Chao
    Li, Qi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (05) : 3329 - 3342
  • [48] FLForest: Byzantine-robust Federated Learning through Isolated Forest
    Wang, Tao
    Zhao, Bo
    Fang, Liming
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 296 - 303
  • [49] Byzantine-robust Federated Learning via Cosine Similarity Aggregation
    Zhu, Tengteng
    Guo, Zehua
    Yao, Chao
    Tan, Jiaxin
    Dou, Songshi
    Wang, Wenrun
    Han, Zhenzhen
    COMPUTER NETWORKS, 2024, 254
  • [50] Byzantine-Robust and Communication-Efficient Personalized Federated Learning
    Zhang, Jiaojiao
    He, Xuechao
    Huang, Yue
    Ling, Qing
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 26 - 39