Byzantine-Robust Online and Offline Distributed Reinforcement Learning

被引:0
|
作者
Chen, Yiding [1 ]
Zhang, Xuezhou [2 ]
Zhang, Kaiqing [3 ]
Wang, Mengdi [2 ]
Zhu, Xiaojin [1 ]
机构
[1] Univ Wisconsin Madison, Madison, WI 53707 USA
[2] Princeton Univ, Princeton, NJ USA
[3] Univ Maryland College Pk, College Pk, MD USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider a distributed reinforcement learning setting where multiple agents separately explore the environment and communicate their experiences through a central server. However, afraction of agents are adversarial and can report arbitrary fake information. Critically, these adversarial agents can collude and their fake data can be of any sizes. We desire to robustly identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents. Our main technical contribution is COW, a novel algorithm for the robust mean estimation from batches problem, that can handle arbitrary batch sizes. Building upon this new estimator, in the offline setting, we design a Byzantine-robust distributed pessimistic value iteration algorithm; in the online setting, we design a Byzantine-robust distributed optimistic value iteration algorithm. Both algorithms obtain near-optimal sample complexities and achieve superior robustness guarantee than prior works.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] Byzantine-Robust Federated Learning with Optimal Statistical Rates
    Zhu, Banghua
    Wang, Lun
    Pang, Qi
    Wang, Shuai
    Jiao, Jiantao
    Song, Dawn
    Jordan, Michael I.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [32] Byzantine-Robust and Efficient Federated Learning for the Internet of Things
    Jin R.
    Hu J.
    Min G.
    Lin H.
    IEEE Internet of Things Magazine, 2022, 5 (01): : 114 - 118
  • [33] Distributed Offline Reinforcement Learning
    Heredia, Paulo
    George, Jemin
    Mou, Shaoshuai
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4621 - 4626
  • [34] Communication-Efficient and Byzantine-Robust Distributed Stochastic Learning with Arbitrary Number of Corrupted Workers
    Jian Xu
    Tong, Xinyi
    Huang, Shao-Lun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5415 - 5420
  • [35] Byzantine-Robust Federated Learning Based on Dynamic Gradient Filtering
    Colosimo, Francesco
    De Rango, Floriano
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1062 - 1067
  • [36] FedCom: Byzantine-Robust Federated Learning Using Data Commitment
    Zhao, Bo
    Wang, Tao
    Fang, Liming
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 33 - 38
  • [37] BR-DeFedRL: Byzantine-Robust Decentralized Federated Reinforcement Learning with Fast Convergence and Communication Efficiency
    Qiao, Jing
    Zhang, Zuyuan
    Yue, Sheng
    Yuan, Yuan
    Cai, Zhipeng
    Zhang, Xiao
    Ren, Ju
    Yu, Dongxiao
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2024, : 141 - 150
  • [38] Efficient and Privacy-Preserving Byzantine-robust Federated Learning
    Luan, Shijie
    Lu, Xiang
    Zhang, Zhuangzhuang
    Chang, Guangsheng
    Guo, Yunchuan
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2202 - 2208
  • [39] SIREN: Byzantine-robust Federated Learning via Proactive Alarming
    Guo, Hanxi
    Wang, Hao
    Song, Tao
    Hua, Yang
    Lv, Zhangcheng
    Jin, Xiulang
    Xue, Zhengui
    Ma, Ruhui
    Guan, Haibing
    PROCEEDINGS OF THE 2021 ACM SYMPOSIUM ON CLOUD COMPUTING (SOCC '21), 2021, : 47 - 60
  • [40] Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
    Fang, Minghong
    Cao, Xiaoyu
    Jia, Jinyuan
    Gong, Neil Nenqiang
    PROCEEDINGS OF THE 29TH USENIX SECURITY SYMPOSIUM, 2020, : 1623 - 1640