Proximal Stochastic Recursive Momentum Methods for Nonconvex Composite Decentralized Optimization

被引:0
|
作者
Mancino-Ball, Gabriel [1 ]
Miao, Shengnan [1 ]
Xu, Yangyang [1 ]
Chen, Jie [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] MIT, IBM Res, IBM Watson AI Lab, Cambridge, MA 02142 USA
关键词
CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consider a network of N decentralized computing agents collaboratively solving a nonconvex stochastic composite problem. In this work, we propose a single-loop algorithm, called DEEPSTORM, that achieves optimal sample complexity for this setting. Unlike double-loop algorithms that require a large batch size to compute the (stochastic) gradient once in a while, DEEPSTORM uses a small batch size, creating advantages in occasions such as streaming data and online learning. requiring O(1) batch size. We conduct convergence analysis for DEEPSTORM with both constant and diminishing step sizes. Additionally, under proper initialization and a small enough desired solution error, we show that DEEPSTORM with a constant step size achieves a network-independent sample complexity, with an additional linear speed-up with respect to N over centralized methods. All codes are made available at https://github.com/gmancino/DEEPSTORM.
引用
收藏
页码:9055 / 9063
页数:9
相关论文
共 50 条
  • [31] On inexact stochastic splitting methods for a class of nonconvex composite optimization problems with relative error
    Hu, Jia
    Han, Congying
    Guo, Tiande
    Zhao, Tong
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (01): : 1 - 33
  • [32] A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
    Li, Zhize
    Li, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [33] Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods
    Loizou, Nicolas
    Richtarik, Peter
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (03) : 653 - 710
  • [34] Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods
    Nicolas Loizou
    Peter Richtárik
    Computational Optimization and Applications, 2020, 77 : 653 - 710
  • [35] A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic Composite Optimization
    Xiao, Tesi
    Chen, Xuxing
    Balasubramanian, Krishnakumar
    Ghadimi, Saeed
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2324 - 2334
  • [36] A UNIFIED PROXIMAL GRADIENT METHOD FOR NONCONVEX COMPOSITE OPTIMIZATION WITH EXTRAPOLATION
    Zhang, Miao
    Zhang, Hongchao
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [37] Recursive Decomposition for Nonconvex Optimization
    Friesen, Abram L.
    Domingos, Pedro
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 253 - 259
  • [38] ON THE DIVERGENCE OF DECENTRALIZED NONCONVEX OPTIMIZATION
    Hong, M. I. N. G. Y. I.
    Zeng, S. I. L. I. A. N. G.
    Zhang, J. U. N. Y. U.
    Sun, H. A. O. R. A. N.
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) : 2879 - 2908
  • [39] Stochastic Frank-Wolfe Methods for Nonconvex Optimization
    Reddi, Sashank J.
    Sra, Suvrit
    Poczos, Barnabas
    Smola, Alex
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 1244 - 1251
  • [40] Stagewise Accelerated Stochastic Gradient Methods for Nonconvex Optimization
    Jia, Cui
    Cui, Zhuoxu
    MATHEMATICS, 2024, 12 (11)