Proximal Stochastic Recursive Momentum Methods for Nonconvex Composite Decentralized Optimization

被引:0
|
作者
Mancino-Ball, Gabriel [1 ]
Miao, Shengnan [1 ]
Xu, Yangyang [1 ]
Chen, Jie [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] MIT, IBM Res, IBM Watson AI Lab, Cambridge, MA 02142 USA
关键词
CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consider a network of N decentralized computing agents collaboratively solving a nonconvex stochastic composite problem. In this work, we propose a single-loop algorithm, called DEEPSTORM, that achieves optimal sample complexity for this setting. Unlike double-loop algorithms that require a large batch size to compute the (stochastic) gradient once in a while, DEEPSTORM uses a small batch size, creating advantages in occasions such as streaming data and online learning. requiring O(1) batch size. We conduct convergence analysis for DEEPSTORM with both constant and diminishing step sizes. Additionally, under proper initialization and a small enough desired solution error, we show that DEEPSTORM with a constant step size achieves a network-independent sample complexity, with an additional linear speed-up with respect to N over centralized methods. All codes are made available at https://github.com/gmancino/DEEPSTORM.
引用
收藏
页码:9055 / 9063
页数:9
相关论文
共 50 条
  • [21] Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
    Horvath, Samuel
    Lei, Lihua
    Richtarik, Peter
    Jordan, Michael I.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (02): : 634 - 648
  • [22] Distributed Stochastic Consensus Optimization With Momentum for Nonconvex Nonsmooth Problems
    Wang, Zhiguo
    Zhang, Jiawei
    Chang, Tsung-Hui
    Li, Jian
    Luo, Zhi-Quan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4486 - 4501
  • [23] FAST DECENTRALIZED NONCONVEX FINITE-SUM OPTIMIZATION WITH RECURSIVE VARIANCE REDUCTION
    Xin, Ran
    Khan, Usman A.
    Kar, Soummya
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (01) : 1 - 28
  • [24] A Proximal Gradient Algorithm for Decentralized Composite Optimization
    Shi, Wei
    Ling, Qing
    Wu, Gang
    Yin, Wotao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (22) : 6013 - 6023
  • [25] Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart for Nonconvex Optimization
    Zhou, Yi
    Wang, Zhe
    Ji, Kaiyi
    Liang, Yingbin
    Tarokh, Vahid
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1445 - 1451
  • [26] Efficiency of Stochastic Coordinate Proximal Gradient Methods on Nonseparable Composite Optimization
    Necoara, Ion
    Chorobura, Flavia
    MATHEMATICS OF OPERATIONS RESEARCH, 2024,
  • [27] Nonconvex optimization with inertial proximal stochastic variance reduction gradient
    He, Lulu
    Ye, Jimin
    Jianwei, E.
    INFORMATION SCIENCES, 2023, 648
  • [28] An Accelerated Block Proximal Framework with Adaptive Momentum for Nonconvex and Nonsmooth Optimization
    Yang, Weifeng
    Min, Wenwen
    arXiv, 2023,
  • [29] Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces
    Caroline Geiersbach
    Teresa Scarinci
    Computational Optimization and Applications, 2021, 78 : 705 - 740
  • [30] Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces
    Geiersbach, Caroline
    Scarinci, Teresa
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (03) : 705 - 740