Proximal Stochastic Recursive Momentum Methods for Nonconvex Composite Decentralized Optimization

被引:0
|
作者
Mancino-Ball, Gabriel [1 ]
Miao, Shengnan [1 ]
Xu, Yangyang [1 ]
Chen, Jie [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] MIT, IBM Res, IBM Watson AI Lab, Cambridge, MA 02142 USA
关键词
CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consider a network of N decentralized computing agents collaboratively solving a nonconvex stochastic composite problem. In this work, we propose a single-loop algorithm, called DEEPSTORM, that achieves optimal sample complexity for this setting. Unlike double-loop algorithms that require a large batch size to compute the (stochastic) gradient once in a while, DEEPSTORM uses a small batch size, creating advantages in occasions such as streaming data and online learning. requiring O(1) batch size. We conduct convergence analysis for DEEPSTORM with both constant and diminishing step sizes. Additionally, under proper initialization and a small enough desired solution error, we show that DEEPSTORM with a constant step size achieves a network-independent sample complexity, with an additional linear speed-up with respect to N over centralized methods. All codes are made available at https://github.com/gmancino/DEEPSTORM.
引用
收藏
页码:9055 / 9063
页数:9
相关论文
共 50 条
  • [1] Proximal stochastic recursive momentum algorithm for nonsmooth nonconvex optimization problems
    Wang, Zhaoxin
    Wen, Bo
    OPTIMIZATION, 2024, 73 (02) : 481 - 495
  • [2] Inexact proximal stochastic second-order methods for nonconvex composite optimization
    Wang, Xiao
    Zhang, Hongchao
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (04): : 808 - 835
  • [3] Momentum-Based Variance-Reduced Proximal Stochastic Gradient Method for Composite Nonconvex Stochastic Optimization
    Xu, Yangyang
    Xu, Yibo
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (01) : 266 - 297
  • [4] Momentum-Based Variance-Reduced Proximal Stochastic Gradient Method for Composite Nonconvex Stochastic Optimization
    Yangyang Xu
    Yibo Xu
    Journal of Optimization Theory and Applications, 2023, 196 : 266 - 297
  • [5] Momentum-based variance-reduced stochastic Bregman proximal gradient methods for nonconvex nonsmooth optimization
    Liao, Shichen
    Liu, Yan
    Han, Congying
    Guo, Tiande
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [6] Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization
    Reddi, Sashank J.
    Sra, Suvrit
    Poczos, Barnabas
    Smola, Alexander J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [7] Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization
    Saeed Ghadimi
    Guanghui Lan
    Hongchao Zhang
    Mathematical Programming, 2016, 155 : 267 - 305
  • [8] Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization
    Ghadimi, Saeed
    Lan, Guanghui
    Zhang, Hongchao
    MATHEMATICAL PROGRAMMING, 2016, 155 (1-2) : 267 - 305
  • [9] Proximal Point Methods and Nonconvex Optimization
    A. Kaplan
    R. Tichatschke
    Journal of Global Optimization, 1998, 13 : 389 - 406
  • [10] Proximal point methods and nonconvex optimization
    Kaplan, A
    Tichatschke, R
    JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) : 389 - 406