A telescopic independent component analysis on functional magnetic resonance imaging dataset

被引:0
|
作者
Mirzaeian, Shiva [1 ,2 ]
Faghiri, Ashkan [1 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ]
Iraji, Armin [1 ,4 ]
机构
[1] Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30303 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30302 USA
[3] Georgia State Univ, Dept Comp Sci, Atlanta, GA USA
[4] Georgia State Univ, Neurosci Inst, Atlanta, GA USA
来源
NETWORK NEUROSCIENCE | 2025年 / 9卷 / 01期
基金
美国国家科学基金会;
关键词
Multi-spatial-scale intrinsic connectivity networks; Independent component analysis (ICA); Resting-state functional magnetic resonance imaging (rs-fMRI); Schizophrenia; PARIETAL MEMORY NETWORK; DEFAULT MODE NETWORK; BRAIN NETWORKS; SCHIZOPHRENIA; IDENTIFICATION; ORDER; REST;
D O I
10.1162/netn_a_00421
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain function can be modeled as dynamic interactions between functional sources at different spatial scales, and each spatial scale can contain its functional sources with unique information, thus using a single scale may provide an incomplete view of brain function. This paper introduces a novel approach, termed "telescopic independent component analysis (TICA)," designed to construct spatial functional hierarchies and estimate functional sources across multiple spatial scales using fMRI data. The method employs a recursive independent component analysis (ICA) strategy, leveraging information from a larger network to guide the extraction of information about smaller networks. We apply our model to the default mode network (DMN), visual network (VN), and right frontoparietal network (RFPN). We investigate further on the DMN by evaluating the difference between healthy people and individuals with schizophrenia. We show that the TICA approach can detect the spatial hierarchy of the DMN, VN, and RFPN. In addition, the TICA revealed DMN-associated group differences between cohorts that may not be captured if we focus on a single-scale ICA. In sum, our proposed approach represents a promising new tool for studying functional sources.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 50 条
  • [41] Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data
    Kim, Yong-Hwan
    Kim, Junghoe
    Lee, Jong-Hwan
    NEUROIMAGE, 2012, 63 (04) : 1864 - 1889
  • [42] Resting-state functional magnetic resonance imaging with independent component analysis for presurgical seizure onset zone localization: A systematic review and meta-analysis
    Chakraborty, Arpan R.
    Almeida, Nyle C.
    Prather, Kiana Y.
    O'Neal, Christen M.
    Wells, Allison A.
    Chen, Sixia
    Conner, Andrew K.
    EPILEPSIA, 2020, 61 (09) : 1958 - 1968
  • [43] Independent component analysis for automated decomposition of in vivo magnetic resonance spectra
    Ladroue, C
    Howe, FA
    Griffiths, JR
    Tate, AR
    MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (04) : 697 - 703
  • [44] Technical Considerations for Functional Magnetic Resonance Imaging Analysis
    Conklin, Chris J.
    Faro, Scott H.
    Mohamed, Feroze B.
    NEUROIMAGING CLINICS OF NORTH AMERICA, 2014, 24 (04) : 695 - +
  • [45] Probabilistic analysis of functional magnetic resonance imaging data
    Frank, LR
    Buxton, RB
    Wong, EC
    MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (01) : 132 - 148
  • [46] Software Tools for the Analysis of Functional Magnetic Resonance Imaging
    Behroozi, Mehdi
    Daliri, Mohammad Reza
    BASIC AND CLINICAL NEUROSCIENCE, 2012, 3 (05) : 71 - 83
  • [47] Analysis of functional magnetic resonance imaging in Python']Python
    Millman, K. Jarrod
    Brett, Matthew
    COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 52 - 55
  • [48] Independent component analysis-based artefact reduction: application to the electrocardiogram for improved magnetic resonance imaging triggering
    Oster, Julien
    Pietquin, Olivier
    Abaecherli, Roger
    Kraemer, Michel
    Felblinger, Jacques
    PHYSIOLOGICAL MEASUREMENT, 2009, 30 (12) : 1381 - 1397
  • [49] Automated Macrovessel Artifact Correction in Dynamic Susceptibility Contrast Magnetic Resonance Imaging Using Independent Component Analysis
    Reishofer, Gernot
    Koschutnig, Karl
    Enzinger, Christian
    Ischebeck, Anja
    Keeling, Stephen
    Stollberger, Rudolf
    Ebner, Franz
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (03) : 848 - 857
  • [50] Functional magnetic resonance imaging
    Bullmore, ET
    Suckling, J
    INTERNATIONAL REVIEW OF PSYCHIATRY, 2001, 13 (01) : 24 - 33