A telescopic independent component analysis on functional magnetic resonance imaging dataset

被引:0
|
作者
Mirzaeian, Shiva [1 ,2 ]
Faghiri, Ashkan [1 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ]
Iraji, Armin [1 ,4 ]
机构
[1] Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30303 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30302 USA
[3] Georgia State Univ, Dept Comp Sci, Atlanta, GA USA
[4] Georgia State Univ, Neurosci Inst, Atlanta, GA USA
来源
NETWORK NEUROSCIENCE | 2025年 / 9卷 / 01期
基金
美国国家科学基金会;
关键词
Multi-spatial-scale intrinsic connectivity networks; Independent component analysis (ICA); Resting-state functional magnetic resonance imaging (rs-fMRI); Schizophrenia; PARIETAL MEMORY NETWORK; DEFAULT MODE NETWORK; BRAIN NETWORKS; SCHIZOPHRENIA; IDENTIFICATION; ORDER; REST;
D O I
10.1162/netn_a_00421
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain function can be modeled as dynamic interactions between functional sources at different spatial scales, and each spatial scale can contain its functional sources with unique information, thus using a single scale may provide an incomplete view of brain function. This paper introduces a novel approach, termed "telescopic independent component analysis (TICA)," designed to construct spatial functional hierarchies and estimate functional sources across multiple spatial scales using fMRI data. The method employs a recursive independent component analysis (ICA) strategy, leveraging information from a larger network to guide the extraction of information about smaller networks. We apply our model to the default mode network (DMN), visual network (VN), and right frontoparietal network (RFPN). We investigate further on the DMN by evaluating the difference between healthy people and individuals with schizophrenia. We show that the TICA approach can detect the spatial hierarchy of the DMN, VN, and RFPN. In addition, the TICA revealed DMN-associated group differences between cohorts that may not be captured if we focus on a single-scale ICA. In sum, our proposed approach represents a promising new tool for studying functional sources.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 50 条
  • [31] Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data
    Schmithorst, VJ
    Holland, SK
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2004, 19 (03) : 365 - 368
  • [32] A structural and functional magnetic resonance imaging dataset of brain tumour patients
    Cyril R. Pernet
    Krzysztof J. Gorgolewski
    Dominic Job
    David Rodriguez
    Ian Whittle
    Joanna Wardlaw
    Scientific Data, 3
  • [33] A structural and functional magnetic resonance imaging dataset of brain tumour patients
    Pernet, Cyril R.
    Gorgolewski, Krzysztof J.
    Job, Dominic
    Rodriguez, David
    Whittle, Ian
    Wardlaw, Joanna
    SCIENTIFIC DATA, 2016, 3
  • [34] Application of independent component analysis to magnetic resonance imaging for enhancing the contrast of gray and white matter
    Nakai, T
    Muraki, S
    Bagarinao, E
    Miki, Y
    Takehara, Y
    Matsuo, K
    Kato, C
    Sakahara, H
    Isoda, H
    NEUROIMAGE, 2004, 21 (01) : 251 - 260
  • [35] Item analysis in functional magnetic resonance imaging
    Bedny, Marina
    Aguirre, Geoffrey K.
    Thompson-Schill, Sharon L.
    NEUROIMAGE, 2007, 35 (03) : 1093 - 1102
  • [36] Spatial independent component analysis of functional brain optical imaging
    Li, Y
    Li, PC
    Liu, YD
    Luo, WH
    Hu, DW
    Luo, QM
    PHOTONICS AND IMAGING IN BIOLOGY AND MEDICINE, 2003, 5254 : 161 - 169
  • [37] An independent component analysis approach for minimizing effects of recirculation in dynamic susceptibility contrast magnetic resonance imaging
    Wu, Yang
    An, Hongyu
    Krim, Hamid
    Lin, Weili
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2007, 27 (03): : 632 - 645
  • [38] Denoise Functional Magnetic Resonance Imaging With Random Matrix Theory Based Principal Component Analysis
    Zhu, Wei
    Ma, Xiaodong
    Zhu, Xiao-Hong
    Ugurbil, Kamil
    Chen, Wei
    Wu, Xiaoping
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (11) : 3377 - 3388
  • [39] Estimating the number of independent components for functional magnetic resonance Imaging data
    Li, Yi-Ou
    Adali, Tuelay
    Calhoun, Vince D.
    HUMAN BRAIN MAPPING, 2007, 28 (11) : 1251 - 1266
  • [40] Large Sample Group Independent Component Analysis of Functional Magnetic Resonance Imaging Using Anatomical Atlas-Based Reduction and Bootstrapped Clustering
    Anderson, Ariana
    Bramen, Jennifer
    Douglas, Pamela K.
    Lenartowicz, Agatha
    Cho, Andrew
    Culbertson, Chris
    Brody, Arthur L.
    Yuille, Alan L.
    Cohen, Mark S.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2011, 21 (02) : 223 - 231