A telescopic independent component analysis on functional magnetic resonance imaging dataset

被引:0
|
作者
Mirzaeian, Shiva [1 ,2 ]
Faghiri, Ashkan [1 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ]
Iraji, Armin [1 ,4 ]
机构
[1] Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30303 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30302 USA
[3] Georgia State Univ, Dept Comp Sci, Atlanta, GA USA
[4] Georgia State Univ, Neurosci Inst, Atlanta, GA USA
来源
NETWORK NEUROSCIENCE | 2025年 / 9卷 / 01期
基金
美国国家科学基金会;
关键词
Multi-spatial-scale intrinsic connectivity networks; Independent component analysis (ICA); Resting-state functional magnetic resonance imaging (rs-fMRI); Schizophrenia; PARIETAL MEMORY NETWORK; DEFAULT MODE NETWORK; BRAIN NETWORKS; SCHIZOPHRENIA; IDENTIFICATION; ORDER; REST;
D O I
10.1162/netn_a_00421
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain function can be modeled as dynamic interactions between functional sources at different spatial scales, and each spatial scale can contain its functional sources with unique information, thus using a single scale may provide an incomplete view of brain function. This paper introduces a novel approach, termed "telescopic independent component analysis (TICA)," designed to construct spatial functional hierarchies and estimate functional sources across multiple spatial scales using fMRI data. The method employs a recursive independent component analysis (ICA) strategy, leveraging information from a larger network to guide the extraction of information about smaller networks. We apply our model to the default mode network (DMN), visual network (VN), and right frontoparietal network (RFPN). We investigate further on the DMN by evaluating the difference between healthy people and individuals with schizophrenia. We show that the TICA approach can detect the spatial hierarchy of the DMN, VN, and RFPN. In addition, the TICA revealed DMN-associated group differences between cohorts that may not be captured if we focus on a single-scale ICA. In sum, our proposed approach represents a promising new tool for studying functional sources.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 50 条
  • [1] Probabilistic independent component analysis for functional magnetic resonance imaging
    Beckmann, CF
    Smith, SA
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) : 137 - 152
  • [2] Lattice independent component analysis for functional magnetic resonance imaging
    Grana, Manuel
    Chyzhyk, Darya
    Garcia-Sebastian, Maite
    Hernandez, Carmen
    INFORMATION SCIENCES, 2011, 181 (10) : 1910 - 1928
  • [3] The impact of denoising on independent component analysis of functional magnetic resonance imaging data
    Pignat, Jean Michel
    Koval, Oleksiy
    Van De Ville, Dimitri
    Voloshynovskiy, Sviatoslav
    Michel, Christoph
    Pun, Thierry
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 213 (01) : 105 - 122
  • [4] An optimal independent component analysis approach for functional magnetic resonance Imaging data
    Zhang, Nan
    Yu, Xianchuan
    Ding, Guosheng
    IIH-MSP: 2006 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2006, : 163 - +
  • [5] Independent Component Analysis Involving Autocorrelated Sources With an Application to Functional Magnetic Resonance Imaging
    Lee, Seonjoo
    Shen, Haipeng
    Truong, Young
    Lewis, Mechelle
    Huang, Xuemei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 1009 - 1024
  • [6] Motion-corrected independent component analysis for robust functional magnetic resonance imaging
    Liao, R
    McKeown, MJ
    Krolik, JL
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 37 - 40
  • [7] Independent Component Analysis of Resting-State Functional Magnetic Resonance Imaging in Pedophiles
    Cantor, J. M.
    Lafaille, S. J.
    Hannah, J.
    Kucyi, A.
    Soh, D. W.
    Girard, T. A.
    Mikulis, D. J.
    JOURNAL OF SEXUAL MEDICINE, 2016, 13 (10): : 1546 - 1554
  • [8] Independent component analysis of functional magnetic resonance imaging data using wavelet dictionaries
    Johnson, Robert
    Marchini, Jonathan
    Smith, Stephen
    Beckmann, Christian
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 625 - +
  • [9] Test-retest precision of functional magnetic resonance imaging processed with independent component analysis
    G. Nybakken
    M. Quigley
    C. Moritz
    D. Cordes
    V. Haughton
    M. Meyerand
    Neuroradiology, 2002, 44 : 403 - 406
  • [10] APPLICATION OF INDEPENDENT COMPONENT ANALYSIS FOR ACTIVATION DETECTION IN FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) DATA
    Akhbari, Mahsa
    Fatemizadeh, Emad
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 129 - 132