Towards physics-informed neural networks for landslide prediction

被引:3
|
作者
Dahal, Ashok [1 ]
Lombardo, Luigi [1 ]
机构
[1] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-AE 7500 Enschede, Netherlands
关键词
Physics-informed neural network; Landslide prediction; Regionalized slope stability; Deep learning; SUSCEPTIBILITY ANALYSIS; STABILITY ANALYSIS; GORKHA EARTHQUAKE; SLOPE; MODELS; HAZARD; FRAMEWORK; REGION; UNITS;
D O I
10.1016/j.enggeo.2024.107852
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
For decades, solutions to regional-scale landslide prediction have primarily relied on data-driven models, which, by definition, are disconnected from the physics of the failure mechanism. The success and spread of such tools came from the ability to exploit proxy variables rather than explicit geotechnical ones, as the latter are prohibitive to acquire over broad landscapes. Our work implements a Physics Informed Neural Network (PINN) approach, thereby adding an intermediate constraint to a standard data-driven architecture to solve for the permanent deformation typical of Newmark slope stability methods. This translates into a neural network tasked with explicitly retrieving geotechnical parameters from common proxy variables and then minimizing a loss function with respect to the available coseismic landslide inventory. The results are promising because our model not only produces excellent predictive performance in the form of standard susceptibility output but, in the process, also generates maps of the expected geotechnical properties at a regional scale. Therefore, Such architecture is framed to tackle coseismic landslide prediction, which, if confirmed in other studies, could open up PINN-based near-real-time predictions.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [42] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [43] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [44] Physics-informed neural networks for spherical indentation problems
    Marimuthu, Karuppasamy Pandian
    Lee, Hyungyil
    MATERIALS & DESIGN, 2023, 236
  • [45] Stiff-PDEs and Physics-Informed Neural Networks
    Prakhar Sharma
    Llion Evans
    Michelle Tindall
    Perumal Nithiarasu
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 2929 - 2958
  • [46] Self-Adaptive Physics-Informed Neural Networks
    Texas A&M University, United States
    1600,
  • [47] Temporal consistency loss for physics-informed neural networks
    Thakur, Sukirt
    Raissi, Maziar
    Mitra, Harsa
    Ardekani, Arezoo M.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [48] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [49] Adaptive task decomposition physics-informed neural networks
    Yang, Jianchuan
    Liu, Xuanqi
    Diao, Yu
    Chen, Xi
    Hu, Haikuo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [50] Physics-informed neural networks for modeling astrophysical shocks
    Moschou, S. P.
    Hicks, E.
    Parekh, R. Y.
    Mathew, D.
    Majumdar, S.
    Vlahakis, N.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):