Towards physics-informed neural networks for landslide prediction

被引:3
|
作者
Dahal, Ashok [1 ]
Lombardo, Luigi [1 ]
机构
[1] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-AE 7500 Enschede, Netherlands
关键词
Physics-informed neural network; Landslide prediction; Regionalized slope stability; Deep learning; SUSCEPTIBILITY ANALYSIS; STABILITY ANALYSIS; GORKHA EARTHQUAKE; SLOPE; MODELS; HAZARD; FRAMEWORK; REGION; UNITS;
D O I
10.1016/j.enggeo.2024.107852
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
For decades, solutions to regional-scale landslide prediction have primarily relied on data-driven models, which, by definition, are disconnected from the physics of the failure mechanism. The success and spread of such tools came from the ability to exploit proxy variables rather than explicit geotechnical ones, as the latter are prohibitive to acquire over broad landscapes. Our work implements a Physics Informed Neural Network (PINN) approach, thereby adding an intermediate constraint to a standard data-driven architecture to solve for the permanent deformation typical of Newmark slope stability methods. This translates into a neural network tasked with explicitly retrieving geotechnical parameters from common proxy variables and then minimizing a loss function with respect to the available coseismic landslide inventory. The results are promising because our model not only produces excellent predictive performance in the form of standard susceptibility output but, in the process, also generates maps of the expected geotechnical properties at a regional scale. Therefore, Such architecture is framed to tackle coseismic landslide prediction, which, if confirmed in other studies, could open up PINN-based near-real-time predictions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8
  • [32] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [33] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171
  • [34] Adversarial uncertainty quantification in physics-informed neural networks
    Yang, Yibo
    Perdikaris, Paris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 136 - 152
  • [35] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [36] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [37] Stiff-PDEs and Physics-Informed Neural Networks
    Sharma, Prakhar
    Evans, Llion
    Tindall, Michelle
    Nithiarasu, Perumal
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 2929 - 2958
  • [38] Self-adaptive physics-informed neural networks
    McClenny, Levi D.
    Braga-Neto, Ulisses M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [39] Respecting causality for training physics-informed neural networks
    Wang, Sifan
    Sankaran, Shyam
    Perdikaris, Paris
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [40] Loss-attentional physics-informed neural networks
    Song, Yanjie
    Wang, He
    Yang, He
    Taccari, Maria Luisa
    Chen, Xiaohui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501