Semi-infinite orbits in affine flag varieties and homology of affine Springer fibers

被引:0
|
作者
Bezrukavnikov, Roman [1 ]
Varshavsky, Yakov [2 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hebrew Univ Jerusalem Givat Ram, Einstein Inst Math, Edmond J Safra Campus, Jerusalem, Israel
关键词
DUALITY;
D O I
10.1017/fms.2025.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected reductive group over an algebraically closed field k, and let $\operatorname {Fl}$ be the affine flag variety of G. For every regular semisimple element $\gamma $ of $G(k((t)))$ , the affine Springer fiber $\operatorname {Fl}_\gamma $ can be presented as a union of closed subvarieties $\operatorname {Fl}<^>{\leq w}_{\gamma }$ , defined as the intersection of $\operatorname {Fl}_{\gamma }$ with an affine Schubert variety $\operatorname {Fl}<^>{\leq w}$ .The main result of this paper asserts that if elements $w_1,\ldots ,w_n$ are sufficiently regular, then the natural map $H_i(\bigcup _{j=1}<^>n \operatorname {Fl}<^>{\leq w_j}_{\gamma })\to H_i(\operatorname {Fl}_{\gamma })$ is injective for every $i\in \mathbb Z$ . It plays an important role in our work [BV], where our result is used to construct good filtrations of $H_i(\operatorname {Fl}_{\gamma })$ . Along the way, we also show that every affine Schubert variety can be written as an intersection of closures of semi-infinite orbits.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Homology of affine Springer fibers in the unramified case
    Goresky, M
    Kottwitz, R
    Macpherson, R
    DUKE MATHEMATICAL JOURNAL, 2004, 121 (03) : 509 - 561
  • [2] AFFINE KAC-MOODY ALGEBRAS AND SEMI-INFINITE FLAG MANIFOLDS
    FEIGIN, BL
    FRENKEL, EV
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (01) : 161 - 189
  • [3] On affine scaling and semi-infinite programming
    Ferris, Michael C.
    Philpott, Andrew B.
    Mathematical Programming, Series B, 1992, 56 (01): : 361 - 364
  • [4] The Semi-Infinite Cohomology of Affine Lie Algebras
    Stephen Hwang
    Communications in Mathematical Physics, 1998, 194 : 591 - 611
  • [5] The semi-infinite cohomology of affine Lie algebras
    Hwang, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (03) : 591 - 611
  • [6] Affine Deligne-Lusztig varieties in affine flag varieties
    Goertz, Ulrich
    Haines, Thomas J.
    Kottwitz, Robert E.
    Reuman, Daniel C.
    COMPOSITIO MATHEMATICA, 2010, 146 (05) : 1339 - 1382
  • [7] Combinatorics in affine flag varieties
    Parkinson, James
    Ram, Arun
    Schwer, Christoph
    JOURNAL OF ALGEBRA, 2009, 321 (11) : 3469 - 3493
  • [8] Demazure character formula for semi-infinite flag varieties
    Kato, Syu
    MATHEMATISCHE ANNALEN, 2018, 371 (3-4) : 1769 - 1801
  • [9] Demazure character formula for semi-infinite flag varieties
    Syu Kato
    Mathematische Annalen, 2018, 371 : 1769 - 1801
  • [10] DIMENSIONS OF AFFINE DELIGNE-LUSZTIG VARIETIES IN AFFINE FLAG VARIETIES
    Goertz, Ulrich
    He, Xuhua
    DOCUMENTA MATHEMATICA, 2010, 15 : 1009 - 1028