Semi-infinite orbits in affine flag varieties and homology of affine Springer fibers

被引:0
|
作者
Bezrukavnikov, Roman [1 ]
Varshavsky, Yakov [2 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hebrew Univ Jerusalem Givat Ram, Einstein Inst Math, Edmond J Safra Campus, Jerusalem, Israel
关键词
DUALITY;
D O I
10.1017/fms.2025.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected reductive group over an algebraically closed field k, and let $\operatorname {Fl}$ be the affine flag variety of G. For every regular semisimple element $\gamma $ of $G(k((t)))$ , the affine Springer fiber $\operatorname {Fl}_\gamma $ can be presented as a union of closed subvarieties $\operatorname {Fl}<^>{\leq w}_{\gamma }$ , defined as the intersection of $\operatorname {Fl}_{\gamma }$ with an affine Schubert variety $\operatorname {Fl}<^>{\leq w}$ .The main result of this paper asserts that if elements $w_1,\ldots ,w_n$ are sufficiently regular, then the natural map $H_i(\bigcup _{j=1}<^>n \operatorname {Fl}<^>{\leq w_j}_{\gamma })\to H_i(\operatorname {Fl}_{\gamma })$ is injective for every $i\in \mathbb Z$ . It plays an important role in our work [BV], where our result is used to construct good filtrations of $H_i(\operatorname {Fl}_{\gamma })$ . Along the way, we also show that every affine Schubert variety can be written as an intersection of closures of semi-infinite orbits.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Affine Springer fibers of type A and combinatorics of diagonal coinvariants
    Hikita, Tatsuyuki
    ADVANCES IN MATHEMATICS, 2014, 263 : 88 - 122
  • [42] AFFINE SPRINGER FIBERS, PROCESI BUNDLES, AND CHEREDNIK ALGEBRAS
    Alvarez, Pablo Boixeda
    Losev, Ivan
    Kivinen, Oscar
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (01) : 807 - 872
  • [43] Modified regular representations of affine and Virasoro algebras, VOA structure and semi-infinite cohomology
    Frenkel, Igor B.
    Styrkas, Konstantin
    ADVANCES IN MATHEMATICS, 2006, 206 (01) : 57 - 111
  • [44] SCHWARTZ SPACE, AND THE SEMI-INFINITE FLAG VARIETY
    Morton-ferguson, Calder
    REPRESENTATION THEORY, 2025, 29 : 1 - 34
  • [45] On the de Rham homology of affine varieties in characteristic 0
    Bridgland, Nicole
    JOURNAL OF ALGEBRA, 2024, 643 : 203 - 223
  • [46] A Gallery Model for Affine Flag Varieties via Chimney Retractions
    Milicevic, Elizabeth
    Naqvi, Yusra
    Schwer, Petra
    Thomas, Anne
    TRANSFORMATION GROUPS, 2024, 29 (02) : 773 - 821
  • [47] HIGHER NEARBY CYCLES AND CENTRAL SHEAVES ON AFFINE FLAG VARIETIES
    Achar, Pramod n.
    Riche, Simon
    JOURNAL OF SINGULARITIES, 2024, 27 : 1 - 30
  • [48] Generalized juggling patterns, quiver Grassmannians and affine flag varieties
    Feigin, Evgeny
    Lanini, Martina
    Putz, Alexander
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (03)
  • [49] POISSON STRUCTURES ON AFFINE SPACES AND FLAG VARIETIES. II
    Goodearl, K. R.
    Yakimov, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (11) : 5753 - 5780
  • [50] Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space
    Brown, K. A.
    Goodearl, K. R.
    Yakimov, M.
    ADVANCES IN MATHEMATICS, 2006, 206 (02) : 567 - 629