Local modification and analysis of a variable-order fractional wave equation

被引:0
|
作者
Li, Shuyu [1 ]
Wang, Hong [2 ]
Jia, Jinhong [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Variable-order; Fractional wave equation; Well-posedness;
D O I
10.1016/j.aml.2024.109425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a local modification of a variable-order time-fractional wave equation, which models the vibrations of a viscoelastic bar along its longitudinal axis. Under suitable assumptions regarding the variable order at t = 0 , we prove that the original model is equivalent to a multiscale wave equation. Furthermore, we analyze the well-posedness of its weak solution. Numerical experiments are implemented to clarify the theoretical analysis.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Numerical technique for fractional variable-order differential equation of fourth-order with delay
    Nandal, Sarita
    Pandey, Dwijendra Narain
    APPLIED NUMERICAL MATHEMATICS, 2021, 161 : 391 - 407
  • [42] ANALYSIS AND IMPLEMENTATION OF NUMERICAL SCHEME FOR THE VARIABLE-ORDER FRACTIONAL MODIFIED SUB-DIFFUSION EQUATION
    Ali, Umair
    Naeem, Muhammad
    Abdullah, Farah Aini
    Wang, Miao-kun
    Salama, Fouad Mohammad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
  • [43] Variable-Order Fractional Scale Calculus
    Valerio, Duarte
    Ortigueira, Manuel D.
    MATHEMATICS, 2023, 11 (21)
  • [44] On variable-order fractional linear viscoelasticity
    Giusti, Andrea
    Colombaro, Ivano
    Garra, Roberto
    Garrappa, Roberto
    Mentrelli, Andrea
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1564 - 1578
  • [45] On the solution of an acoustic wave equation with variable-order derivative loss operator
    Atangana, Abdon
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [46] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Hoa T. B. Ngo
    Mohsen Razzaghi
    Thieu N. Vo
    Numerical Algorithms, 2023, 92 : 1571 - 1588
  • [47] Local Discontinuous Galerkin Method for the Variable-Order Fractional Mobile-Immobile Advection-Dispersion Equation
    Miaomiao Yang
    Lijie Liu
    Leilei Wei
    Computational Mathematics and Mathematical Physics, 2025, 65 (2) : 308 - 319
  • [48] On the solution of an acoustic wave equation with variable-order derivative loss operator
    Abdon Atangana
    Advances in Difference Equations, 2013
  • [49] A Meshless Solution for the Variable-Order Time Fractional Nonlinear Klein–Gordon Equation
    Gharian D.
    Ghaini F.M.M.
    Heydari M.H.
    Avazzadeh Z.
    International Journal of Applied and Computational Mathematics, 2020, 6 (5)
  • [50] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Ngo, Hoa T. B.
    Razzaghi, Mohsen
    Vo, Thieu N.
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1571 - 1588