Local modification and analysis of a variable-order fractional wave equation

被引:0
|
作者
Li, Shuyu [1 ]
Wang, Hong [2 ]
Jia, Jinhong [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Variable-order; Fractional wave equation; Well-posedness;
D O I
10.1016/j.aml.2024.109425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a local modification of a variable-order time-fractional wave equation, which models the vibrations of a viscoelastic bar along its longitudinal axis. Under suitable assumptions regarding the variable order at t = 0 , we prove that the original model is equivalent to a multiscale wave equation. Furthermore, we analyze the well-posedness of its weak solution. Numerical experiments are implemented to clarify the theoretical analysis.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Meshfree methods for the variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Yang, Jiye
    Liu, Zhiyong
    Xu, Qiuyan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 211 : 489 - 514
  • [32] A variable-order fractional differential equation model of shape memory polymers
    Li, Zheng
    Wang, Hong
    Xiao, Rui
    Yang, Su
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 473 - 485
  • [33] Stability and convergence of the space fractional variable-order Schrödinger equation
    Abdon Atangana
    Alain H Cloot
    Advances in Difference Equations, 2013
  • [34] Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation
    Ali, Umair
    Mastoi, Sanaullah
    Othman, Wan Ainun Mior
    Khater, Mostafa M. A.
    Sohail, Muhammad
    AIMS MATHEMATICS, 2021, 6 (09): : 10055 - 10069
  • [35] The Maximum Principle for Variable-Order Fractional Diffusion Equations and the Estimates of Higher Variable-Order Fractional Derivatives
    Xue, Guangming
    Lin, Funing
    Su, Guangwang
    FRONTIERS IN PHYSICS, 2020, 8
  • [36] Multiplicity Results for Variable-Order Nonlinear Fractional Magnetic Schrodinger Equation with Variable Growth
    Zhou, Jianwen
    Zhou, Bianxiang
    Wang, Yanning
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [37] A hybrid wavelet-meshless method for variable-order fractional regularized long-wave equation
    Hosseininia, M.
    Heydari, M. H.
    Avazzadeh, Z.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 142 : 61 - 70
  • [38] Logistic fractional variable-order equation - numerical simulations for fitting parameters
    Mozyrska, Dorota
    Oziablo, Piotr
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 99 - 104
  • [39] A Simultaneous Inversion Problem for the Variable-Order Time Fractional Differential Equation with Variable Coefficient
    Wang, Shengnan
    Wang, Zhendong
    Li, Gongsheng
    Wang, Yingmei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [40] Numerical analysis for a variable-order nonlinear cable equation
    Chen, Chang-Ming
    Liu, F.
    Burrage, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) : 209 - 224