Machine-learning approaches to predict individualized treatment effect using a randomized controlled trial

被引:0
|
作者
Hamaya, Rikuta [1 ,2 ,3 ]
Hara, Konan [4 ]
Manson, JoAnn E. [1 ,2 ,3 ,5 ,6 ]
Rimm, Eric B. [3 ,6 ,7 ,8 ]
Sacks, Frank M. [6 ,7 ]
Xue, Qiaochu [9 ]
Qi, Lu [3 ,6 ,7 ,9 ]
Cook, Nancy R. [1 ,2 ,3 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Prevent Med, 900 Commonwealth Ave East, Boston, MA 02115 USA
[2] Harvard Med Sch, 900 Commonwealth Ave East, Boston, MA 02115 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[4] Univ Arizona, Dept Econ, Tucson, AZ USA
[5] Brigham & Womens Hosp, Mary Horrigan Connors Ctr Womens Hlth & Gender Bio, Boston, MA USA
[6] Harvard Med Sch, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[8] Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA USA
[9] Tulane Univ, Sch Publ Hlth & Trop Med, Dept Epidemiol, New Orleans, LA USA
基金
美国国家卫生研究院;
关键词
Machine-learning; Heterogeneous treatment effect; Conditional average treatment effect; Randomized controlled trial; Weight loss intervention; WEIGHT-LOSS DIETS; INSULIN-RESISTANCE; SUBGROUP ANALYSES; HETEROGENEITY;
D O I
10.1007/s10654-024-01185-7
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Recent advancements in machine learning (ML) for analyzing heterogeneous treatment effects (HTE) are gaining prominence within the medical and epidemiological communities, offering potential breakthroughs in the realm of precision medicine by enabling the prediction of individual responses to treatments. This paper introduces the methodological frameworks used to study HTEs, particularly based on a single randomized controlled trial (RCT). We focus on methods to estimate conditional average treatment effect (CATE) for multiple covariates, aiming to predict individualized treatment effects. We explore a range of methodologies from basic frameworks like the T-learner, S-learner, and Causal Forest, to more advanced ones such as the DR-learner and R-learner, as well as cross-validation for CATE estimation to enhance statistical efficiency by estimating CATE for all RCT participants. We also provide a practical application of these approaches using the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial, which compared the effects of high versus low-fat diet interventions on 2-year weight changes. We compared different sets of covariates for CATE estimation, showing that the DR- and R-learners are useful for the estimation of CATE in high-dimensional settings. This paper aims to explain the theoretical underpinnings and methodological nuances of ML-based HTE analysis without relying on technical jargon, making these concepts more accessible to the clinical and epidemiological research communities.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Machine learning approaches to predict coagulant dosage in water treatment plants
    Zhang K.
    Achari G.
    Li H.
    Zargar A.
    Sadiq R.
    International Journal of System Assurance Engineering and Management, 2013, 4 (2) : 205 - 214
  • [42] Machine-learning approaches in drug discovery: methods and applications
    Lavecchia, Antonio
    DRUG DISCOVERY TODAY, 2015, 20 (03) : 318 - 331
  • [43] Crop Contamination Forecasting Based on Machine-Learning Approaches
    V. K. Kalichkin
    O. K. Alsova
    K. Yu. Maksimovich
    N. V. Vasilyeva
    Russian Agricultural Sciences, 2022, 48 (2) : 115 - 122
  • [44] Individualized treatment duration for hepatitis C genotype 1 patients: A randomized controlled trial
    Mangia, Alessandra
    Minerva, Nicola
    Bacca, Donato
    Cozzolongo, Raffaele
    Ricci, Giovanni L.
    Carretta, Vito
    Vinelli, Francesco
    Scotto, Gaetano
    Montalto, Giuseppe
    Romano, Mario
    Cristofaro, Giuseppe
    Mottola, Leonardo
    Spirito, Fulvio
    Andriulli, Angelo
    HEPATOLOGY, 2008, 47 (01) : 43 - 50
  • [45] A RANDOMIZED CONTROLLED TRIAL OF INDIVIDUALIZED HOMOEOPATHIC TREATMENT TO REDUCE ANGER & THEREBY REDUCING HYPERTENSION
    Bagadia, Leena
    JOURNAL OF HYPERTENSION, 2022, 40 (SUPPL) : E304 - E305
  • [46] INDIVIDUALIZED TREATMENT FOR ALCOHOL-WITHDRAWAL - A RANDOMIZED DOUBLE-BLIND CONTROLLED TRIAL
    SAITZ, R
    MAYOSMITH, MF
    ROBERTS, MS
    REDMOND, HA
    BERNARD, DR
    CALKINS, DR
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1994, 272 (07): : 519 - 523
  • [47] Using Machine-Learning Techniques to Predict Postdonation Kidney Function in Living Kidney Donors
    Jeon, Junseok
    Lee, Kyungho
    Lee, Jung Eun
    Huh, Wooseong
    Jang, Hye Ryoun
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [48] Effect of individualized occupational therapy on cognition among patients with schizophrenia: A randomized controlled trial
    Shimada, Takeshi
    Morimoto, Takafumi
    Nagayama, Hirofumi
    Nakamura, Naoko
    Aisu, Kaori
    Kito, Aki
    Kojima, Ryo
    Yamanushi, Ayumi
    Kawano, Kojiro
    Hikita, Noriaki
    Yotsumoto, Kayano
    Ebisu, Tomoe
    Kawamura, Masashi
    Inoue, Takao
    Orui, Junya
    Asakura, Tatsumi
    Akazawa, Masafumi
    Kobayashi, Masayoshi
    SCHIZOPHRENIA RESEARCH, 2024, 269 : 18 - 27
  • [49] Efficacy of maintenance treatment approaches for childhood overweight - A randomized controlled trial
    Wilfley, Denise E.
    Stein, Richard I.
    Saelens, Brian E.
    Mockus, Danyte S.
    Matt, Georg E.
    Hayden-Wade, Helen A.
    Welch, R. Robinson
    Schechtman, Kenneth B.
    Thompson, Paul A.
    Epstein, Leonard H.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 298 (14): : 1661 - 1673
  • [50] Structure-based prediction of BRAF mutation classes using machine-learning approaches
    Fanny S. Krebs
    Christian Britschgi
    Sylvain Pradervand
    Rita Achermann
    Petros Tsantoulis
    Simon Haefliger
    Andreas Wicki
    Olivier Michielin
    Vincent Zoete
    Scientific Reports, 12