Machine-learning approaches to predict individualized treatment effect using a randomized controlled trial

被引:0
|
作者
Hamaya, Rikuta [1 ,2 ,3 ]
Hara, Konan [4 ]
Manson, JoAnn E. [1 ,2 ,3 ,5 ,6 ]
Rimm, Eric B. [3 ,6 ,7 ,8 ]
Sacks, Frank M. [6 ,7 ]
Xue, Qiaochu [9 ]
Qi, Lu [3 ,6 ,7 ,9 ]
Cook, Nancy R. [1 ,2 ,3 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Prevent Med, 900 Commonwealth Ave East, Boston, MA 02115 USA
[2] Harvard Med Sch, 900 Commonwealth Ave East, Boston, MA 02115 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[4] Univ Arizona, Dept Econ, Tucson, AZ USA
[5] Brigham & Womens Hosp, Mary Horrigan Connors Ctr Womens Hlth & Gender Bio, Boston, MA USA
[6] Harvard Med Sch, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[8] Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA USA
[9] Tulane Univ, Sch Publ Hlth & Trop Med, Dept Epidemiol, New Orleans, LA USA
基金
美国国家卫生研究院;
关键词
Machine-learning; Heterogeneous treatment effect; Conditional average treatment effect; Randomized controlled trial; Weight loss intervention; WEIGHT-LOSS DIETS; INSULIN-RESISTANCE; SUBGROUP ANALYSES; HETEROGENEITY;
D O I
10.1007/s10654-024-01185-7
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Recent advancements in machine learning (ML) for analyzing heterogeneous treatment effects (HTE) are gaining prominence within the medical and epidemiological communities, offering potential breakthroughs in the realm of precision medicine by enabling the prediction of individual responses to treatments. This paper introduces the methodological frameworks used to study HTEs, particularly based on a single randomized controlled trial (RCT). We focus on methods to estimate conditional average treatment effect (CATE) for multiple covariates, aiming to predict individualized treatment effects. We explore a range of methodologies from basic frameworks like the T-learner, S-learner, and Causal Forest, to more advanced ones such as the DR-learner and R-learner, as well as cross-validation for CATE estimation to enhance statistical efficiency by estimating CATE for all RCT participants. We also provide a practical application of these approaches using the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial, which compared the effects of high versus low-fat diet interventions on 2-year weight changes. We compared different sets of covariates for CATE estimation, showing that the DR- and R-learners are useful for the estimation of CATE in high-dimensional settings. This paper aims to explain the theoretical underpinnings and methodological nuances of ML-based HTE analysis without relying on technical jargon, making these concepts more accessible to the clinical and epidemiological research communities.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial
    Pavel, Andreea M.
    Rennie, Janet M.
    de Vries, Linda S.
    Blennow, Mats
    Foran, Adrienne
    Shah, Divyen K.
    Pressler, Ronit M.
    Kapellou, Olga
    Dempsey, Eugene M.
    Mathieson, Sean R.
    Pavlidis, Elena
    van Huffelen, Alexander C.
    Livingstone, Vicki
    Toet, Mona C.
    Weeke, Lauren C.
    Finder, Mikael
    Mitra, Subhabrata
    Murray, Deirdre M.
    Marnane, William P.
    Boylan, Geraldine B.
    LANCET CHILD & ADOLESCENT HEALTH, 2020, 4 (10): : 740 - 749
  • [22] Preface: machine-learning approaches for computational mechanics
    Li, Z.
    Hu, Guohui
    Wang, Zhiliang
    Karniadakis, G. E.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2023, 44 (07) : 1035 - 1038
  • [23] Machine learning approaches to evaluate heterogeneous treatment effects in randomized controlled trials: a scoping review
    Inoue, Kosuke
    Adomi, Motohiko
    Efthimiou, Orestis
    Komura, Toshiaki
    Omae, Kenji
    Onishi, Akira
    Tsutsumi, Yusuke
    Fujii, Tomoko
    Kondo, Naoki
    Furukawa, Toshi A.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2024, 176
  • [24] Prescriptive and Descriptive Approaches to Machine-Learning Transparency
    Adkins, David
    Alsallakh, Bilal
    Cheema, Adeel
    Kokhlikyan, Narine
    McReynolds, Emily
    Mishra, Pushkar
    Procope, Chavez
    Sawruk, Jeremy
    Wang, Erin
    Zvyagina, Polina
    EXTENDED ABSTRACTS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2022, 2022,
  • [25] A machine-learning approach to predict Upper Gastrointestinal multidisciplinary team treatment decisions
    Thavanesan, Navamayooran
    Vigneswaran, Ganesh
    Rahman, Saqib
    Underwood, Timothy
    BRITISH JOURNAL OF SURGERY, 2022, 109
  • [26] Who benefits from the intervention? A machine learning approach to predict treatment effectiveness in patients with depression or anxiety from a randomized controlled trial
    van Eickels, Deborah
    Toennies, Justus
    Krisam, Regina
    Feisst, Manuel
    Wensing, Michel
    Szecsenyi, Joachim
    Icks, Andrea
    Hartmann, Mechthild
    Friederich, Hans-Christoph
    Haun, Markus
    PSYCHOTHERAPY AND PSYCHOSOMATICS, 2024, 93 : 122 - 122
  • [27] A machine-learning based model for automated recommendation of individualized treatment of rifampicin-resistant tuberculosis
    Verboven, Lennert
    Callens, Steven
    Black, John
    Maartens, Gary
    Dooley, Kelly E.
    Potgieter, Samantha
    Cartuyvels, Ruben
    Laukens, Kris
    Warren, Robin M.
    Van Rie, Annelies
    PLOS ONE, 2024, 19 (09):
  • [28] Controlled Breathing Effect on Respiration Quality Assessment Using Machine Learning Approaches
    Rozo, Andrea
    Buil, Jeroen
    Moeyersons, Jonathan
    Morales, John
    van der Westen, Roberto Garcia
    Lijnen, Lien
    Smeets, Christophe
    Jantzen, Sjors
    Monpellier, Valerie
    Ruttens, David
    Van Hoof, Chris
    Van Huffel, Sabine
    Groenendaal, Willemijn
    Varon, Carolina
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [29] Using machine-learning approaches to predict non-participation in a nationwide general health check-up scheme
    Shimoda, Akihiro
    Ichikawa, Daisuke
    Oyama, Hiroshi
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 163 : 39 - 46
  • [30] Individualized Web-Based Exercise for the Treatment of Depression: Randomized Controlled Trial
    Haller, Nils
    Lorenz, Sonja
    Pfirrmann, Daniel
    Koch, Cora
    Lieb, Klaus
    Dettweiler, Ulrich
    Simon, Perikles
    Jung, Patrick
    JMIR MENTAL HEALTH, 2018, 5 (04):