Bound state solutions of the Dunkl-Schrödinger equation for the sextic anharmonic oscillator potential

被引:0
|
作者
Schulze-Halberg, Axel [1 ,2 ]
机构
[1] Indiana Univ Northwest, Dept Math & Actuarial Sci, 3400 Broadway, Gary, IN 46408 USA
[2] Indiana Univ Northwest, Dept Phys, 3400 Broadway, Gary, IN 46408 USA
关键词
Dunkl operator; Schr & ouml; dinger equation; sextic anharmonic oscillator potential; biconfluent Heun function; bound states;
D O I
10.1142/S0217732324501785
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the one-dimensional Schr & ouml;dinger equation for the sextic anharmonic oscillator potential within the Dunkl formalism. Solutions of bound state type are constructed, and results are compared to the conventional scenario.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bound states of the Dunkl-Schrödinger equation for the spiked inverted oscillator potential
    Schulze-Halberg, Axel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (32):
  • [2] Dunkl-Schrödinger Equation with Time-Dependent Harmonic Oscillator Potential
    Benchikha, A.
    Hamil, B.
    Lutfuoglu, B. C.
    Khantoul, B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (10)
  • [3] Approximate bound state solutions of the Dunkl-Schrödinger equation for a hyperbolic double-well interaction
    Schulze-Halberg, Axel
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [4] Approximate Bound States for the Dunkl-Schrödinger Equation with Symmetrized Hulthén Potential
    Schulze-Halberg, Axel
    FEW-BODY SYSTEMS, 2024, 65 (04)
  • [5] Dunkl-Schrödinger equation in higher dimensions
    Hamil, B.
    Lutfuoglu, B. C.
    Merad, M.
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [6] Approximate Solutions of the Dunkl-Schrödinger Equation for the Hyperbolic Pöschl-Teller Potential
    Schulze-Halberg, Axel
    FEW-BODY SYSTEMS, 2024, 65 (02)
  • [7] Solutions of the Generalized Dunkl-Schrödinger Equation for Harmonic and Coulomb Potentials in two Dimensions
    Hassanabadi, S.
    Kriz, J.
    Lutfuoglu, B. C.
    Chung, W. S.
    Sedaghatnia, P.
    Hassanabadi, H.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (12)
  • [8] Time-dependent Dunkl-Schrödinger equation with an angular-dependent potential
    Lutfuoglu, B. C.
    Benchikha, A.
    Hamil, B.
    Khantoul, B.
    MODERN PHYSICS LETTERS A, 2025, 40 (07N08)
  • [9] Comment on “a new approach to solve the Schrödinger equation with an anharmonic sextic potential”
    Francisco M. Fernández
    Journal of Mathematical Chemistry, 2022, 60 : 261 - 266
  • [10] Unique continuation inequalities for Dunkl-Schrödinger equations
    Mukherjee, Suman
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)