A Comparison of Temporal and Spatio-Temporal Methods for Short-Term Traffic Flow Prediction

被引:0
|
作者
Rezzouqi, Hajar [1 ]
Naja, Assia [1 ]
Sbihi, Nada [1 ]
Benbrahim, Houda [2 ,3 ]
Ghogho, Mounir [1 ,4 ]
机构
[1] Int Univ Rabat, TICLab, Rabat, Morocco
[2] Rabat IT Ctr, IRDA, Rabat, Morocco
[3] Mohammed V Univ Rabat, ENSIAS, Rabat, Morocco
[4] Univ Leeds, Leeds, W Yorkshire, England
关键词
short-term prediction; VAR; KNN; SVR; Historical average; AR; spatio-temporal analysis; normal conditions; abonormal conditions; MULTIVARIATE; NETWORK;
D O I
10.1109/IWCMC61514.2024.10592453
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Accurate short-term traffic flow prediction is crucial for effective urban traffic management. However, selecting the most suitable prediction model and relevant features poses a significant challenge. Moreover, predicting traffic flow on a road using only historical data, adjacent roads, or all roads in the study area can compromise the model's accuracy or execution time. This paper tackles this challenge by proposing an enhanced Vector Auto regression VAR-based prediction method. We suggest selecting relevant roads for the model using spatio-temporal correlation analysis. Subsequently, we conduct a comparative study between our methodology's results and those obtained from other temporal and spatio-temporal traffic forecasting methods, including historical average, K-nearest neighbors (KNN), support vector machine for regression (SVR), and autoregressive model (AR). Model performance is evaluated by considering both the impact of normal and abnormal traffic conditions, as well as the selected training days: weekdays and weekends. The study utilizes a traffic dataset collected from an area of Xuancheng city in China. The proposed enhanced VAR outperforms the other methods for short-term forecasting horizons (approximate to from 5 to 25 minutes), under both normal and abnormal traffic conditions.
引用
收藏
页码:735 / 741
页数:7
相关论文
共 50 条
  • [31] Sequential Patterns for Spatio-Temporal Traffic Prediction
    Almuhisen, Feda
    Durand, Nicolas
    Brenner, Leonardo
    Quafafou, Mohamed
    2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2021), 2021, : 595 - 602
  • [32] Application of temporal difference learning rules in short-term traffic flow prediction
    Abdi, Javad
    Moshiri, Behzad
    EXPERT SYSTEMS, 2015, 32 (01) : 49 - 64
  • [33] Adaptive Spatio-Temporal Relation Based Transformer for Traffic Flow Prediction
    Wang, Ruidong
    Xi, Liang
    Ye, Jinlin
    Zhang, Fengbin
    Yu, Xu
    Xu, Lingwei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2220 - 2230
  • [34] A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction
    Li, Yanbing
    Zhao, Wei
    Fan, Huilong
    MATHEMATICS, 2022, 10 (10)
  • [35] A Frequency-Aware Spatio-Temporal Network for Traffic Flow Prediction
    Peng, Shunfeng
    Shen, Yanyan
    Zhu, Yanmin
    Chen, Yuting
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2019), PT II, 2019, 11447 : 697 - 712
  • [36] A spatio-temporal sequence-to-sequence network for traffic flow prediction
    Cao, Shuqin
    Wu, Libing
    Wu, Jia
    Wu, Dan
    Li, Qingan
    INFORMATION SCIENCES, 2022, 610 : 185 - 203
  • [37] Improved Spatio-Temporal Residual Networks for Bus Traffic Flow Prediction
    Liu, Panbiao
    Zhang, Yong
    Kong, Dehui
    Yin, Baocai
    APPLIED SCIENCES-BASEL, 2019, 9 (04):
  • [38] Traffic Flow Prediction Based on Deep Spatio-Temporal Domain Adaptation
    Wang, Zhihui
    Li, Bingxin
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT II, DEXA 2024, 2024, 14911 : 110 - 115
  • [39] STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow Prediction
    Bhaumik, Kishor Kumar
    Niloy, Fahim Faisal
    Mahmud, Saif
    Woo, Simon S.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT VI, PAKDD 2024, 2024, 14650 : 288 - 299
  • [40] Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction
    Ji, Jiahao
    Wang, Jingyuan
    Huang, Chao
    Wu, Junjie
    Xu, Boren
    Wu, Zhenhe
    Zhang, Junbo
    Zheng, Yu
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4356 - 4364