New Dynamic Programming algorithm for the Multiobjective Minimum Spanning Tree problem

被引:0
|
作者
de las Casas, Pedro Maristany [1 ]
Sedeno-Noda, Antonio [2 ]
Borndoerfer, Ralf [1 ]
机构
[1] Zuse Inst Berlin, Network Optimizat, Takustr 7, D-14195 Berlin, Germany
[2] Univ La Laguna, Matemat Estadist & Invest Operat, San Cristobal De La Lagun 38271, Spain
关键词
Multiple objective programming; Multiobjective Minimum Spanning Trees; Dynamic Programming;
D O I
10.1016/j.cor.2024.106852
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Multiobjective Minimum Spanning Tree (MO-MST) problem generalizes the Minimum Spanning Tree problem by weighting the edges of the input graph using vectors instead of scalars. In this paper, we design a new Dynamic Programming MO-MST algorithm. Dynamic Programming for a MO-MST instance requests solving a One-to-One Multiobjective Shortest Path (MOSP) instance and both instances have equivalent solution sets. The MOSP instance is defined on a so called transition graph. We study the original size of this graph in detail and reduce its size using cost-dependent arc pruning criteria. To solve the MOSP instance on the reduced transition graph, , we design the Implicit Graph Multiobjective Dijkstra Algorithm (IG-MDA), exploiting recent improvements on MOSP algorithms from the literature. All in all, the new IG-MDA outperforms the current state of the art on a big set of instances from the literature. Our code and results are publicly available.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] ON THE HISTORY OF THE MINIMUM SPANNING TREE PROBLEM
    GRAHAM, RL
    HELL, P
    ANNALS OF THE HISTORY OF COMPUTING, 1985, 7 (01): : 43 - 57
  • [32] ON THE GENERALIZED MINIMUM SPANNING TREE PROBLEM
    MYUNG, YS
    LEE, CH
    TCHA, DW
    NETWORKS, 1995, 26 (04) : 231 - 241
  • [33] A constrained minimum spanning tree problem
    Chen, GT
    Zhang, GC
    COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) : 867 - 875
  • [34] The minimum risk spanning tree problem
    Chen, Xujin
    Hu, Jie
    Hu, Xiaodong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 81 - +
  • [35] THE PROBABILISTIC MINIMUM SPANNING TREE PROBLEM
    BERTSIMAS, DJ
    NETWORKS, 1990, 20 (03) : 245 - 275
  • [36] THE QUADRATIC MINIMUM SPANNING TREE PROBLEM
    ASSAD, A
    XU, WX
    NAVAL RESEARCH LOGISTICS, 1992, 39 (03) : 399 - 417
  • [37] The Minimum Moving Spanning Tree Problem
    Akitaya H.A.
    Biniaz A.
    Bose P.
    De Carufel J.-L.
    Maheshwari A.
    da Silveira L.F.S.X.
    Smid M.
    Journal of Graph Algorithms and Applications, 2023, 27 (01) : 1 - 18
  • [38] The Distributed Minimum Spanning Tree Problem
    Schmid, Stefan
    Pandurangan, Gopal
    Robinson, Peter
    Scquizzato, Michele
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2018, (125): : 51 - 80
  • [39] An Efficient Mixed Integer Linear Programming Model for the Minimum Spanning Tree Problem
    Abdelmaguid, Tamer F.
    MATHEMATICS, 2018, 6 (10)
  • [40] Chance-constrained programming for fuzzy quadratic minimum spanning tree problem
    Gao, JW
    Lu, M
    Liu, LZ
    2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 983 - 987