New Dynamic Programming algorithm for the Multiobjective Minimum Spanning Tree problem

被引:0
|
作者
de las Casas, Pedro Maristany [1 ]
Sedeno-Noda, Antonio [2 ]
Borndoerfer, Ralf [1 ]
机构
[1] Zuse Inst Berlin, Network Optimizat, Takustr 7, D-14195 Berlin, Germany
[2] Univ La Laguna, Matemat Estadist & Invest Operat, San Cristobal De La Lagun 38271, Spain
关键词
Multiple objective programming; Multiobjective Minimum Spanning Trees; Dynamic Programming;
D O I
10.1016/j.cor.2024.106852
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Multiobjective Minimum Spanning Tree (MO-MST) problem generalizes the Minimum Spanning Tree problem by weighting the edges of the input graph using vectors instead of scalars. In this paper, we design a new Dynamic Programming MO-MST algorithm. Dynamic Programming for a MO-MST instance requests solving a One-to-One Multiobjective Shortest Path (MOSP) instance and both instances have equivalent solution sets. The MOSP instance is defined on a so called transition graph. We study the original size of this graph in detail and reduce its size using cost-dependent arc pruning criteria. To solve the MOSP instance on the reduced transition graph, , we design the Implicit Graph Multiobjective Dijkstra Algorithm (IG-MDA), exploiting recent improvements on MOSP algorithms from the literature. All in all, the new IG-MDA outperforms the current state of the art on a big set of instances from the literature. Our code and results are publicly available.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A genetic algorithm approach on capacitated minimum spanning tree problem
    Zhou, Gengui
    Cao, Zhenyu
    Cao, Jian
    Meng, Zhiqing
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 215 - 218
  • [22] A Memetic Algorithm for Solving the Generalized Minimum Spanning Tree Problem
    Pop, Petrica
    Matei, Oliviu
    Sabo, Cosmin
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2011, 96 : 187 - 194
  • [23] An approximation algorithm for the balanced capacitated minimum spanning tree problem
    Fallah, H.
    Didehvar, F.
    Rahmati, F.
    SCIENTIA IRANICA, 2021, 28 (03) : 1479 - 1492
  • [24] Minimum Spanning Tree Problem Research based on Genetic Algorithm
    Liu, Hong
    Zhou, Gengui
    SECOND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 2, PROCEEDINGS, 2009, : 197 - +
  • [25] A new proof of the GHS minimum spanning tree algorithm
    Moses, Yoram
    Shimony, Benny
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2006, 4167 : 120 - +
  • [26] A new efficient parallel algorithm for minimum spanning tree
    de Alencar Vasconcellos, Jucele Franca
    Caceres, Edson Norberto
    Mongelli, Henrique
    Song, Siang Wun
    2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018), 2018, : 107 - 114
  • [27] A New Hybrid Genetic Algorithm for Solving the Bounded Diameter Minimum Spanning Tree Problem
    Huynh Thi Thanh Binh
    Nguyen Xuan, Hoai
    McKay, R. I.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3128 - +
  • [28] Dynamic channel routing algorithm based on minimum spanning tree
    Wei, Jian-Jun
    Kang, Ji-Chang
    Lei, Yan-Jing
    Chen, Fu-Long
    Zhongbei Daxue Xuebao (Ziran Kexue Ban)/Journal of North University of China (Natural Science Edition), 2008, 29 (02): : 120 - 124
  • [29] Multiobjective genetic search for spanning tree problem
    Kumar, R
    Singh, PK
    Chakrabarti, PP
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 218 - 223
  • [30] On the minimum label spanning tree problem
    Krumke, SO
    Wirth, HC
    INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 81 - 85