New Dynamic Programming algorithm for the Multiobjective Minimum Spanning Tree problem

被引:0
|
作者
de las Casas, Pedro Maristany [1 ]
Sedeno-Noda, Antonio [2 ]
Borndoerfer, Ralf [1 ]
机构
[1] Zuse Inst Berlin, Network Optimizat, Takustr 7, D-14195 Berlin, Germany
[2] Univ La Laguna, Matemat Estadist & Invest Operat, San Cristobal De La Lagun 38271, Spain
关键词
Multiple objective programming; Multiobjective Minimum Spanning Trees; Dynamic Programming;
D O I
10.1016/j.cor.2024.106852
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Multiobjective Minimum Spanning Tree (MO-MST) problem generalizes the Minimum Spanning Tree problem by weighting the edges of the input graph using vectors instead of scalars. In this paper, we design a new Dynamic Programming MO-MST algorithm. Dynamic Programming for a MO-MST instance requests solving a One-to-One Multiobjective Shortest Path (MOSP) instance and both instances have equivalent solution sets. The MOSP instance is defined on a so called transition graph. We study the original size of this graph in detail and reduce its size using cost-dependent arc pruning criteria. To solve the MOSP instance on the reduced transition graph, , we design the Implicit Graph Multiobjective Dijkstra Algorithm (IG-MDA), exploiting recent improvements on MOSP algorithms from the literature. All in all, the new IG-MDA outperforms the current state of the art on a big set of instances from the literature. Our code and results are publicly available.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A new algorithm for the minimum spanning tree verification problem
    Williamson, Matthew
    Subramani, K.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 61 (01) : 189 - 204
  • [2] A new algorithm for the minimum spanning tree verification problem
    Matthew Williamson
    K. Subramani
    Computational Optimization and Applications, 2015, 61 : 189 - 204
  • [3] A new approach for the multiobjective minimum spanning tree
    Santos, J. L.
    Pugliese, Luigi Di Puglia
    Guerriero, Francesca
    COMPUTERS & OPERATIONS RESEARCH, 2018, 98 : 69 - 83
  • [4] An algorithm for inverse minimum spanning tree problem
    Zhang, JH
    Xu, SJ
    Ma, ZF
    OPTIMIZATION METHODS & SOFTWARE, 1997, 8 (01): : 69 - 84
  • [5] Distributed evolutionary algorithm search for multiobjective spanning tree problem
    Kumar, R
    Singh, PK
    Chakrabarti, PP
    DISTRIBUTED COMPUTING - IWDC 2004, PROCEEDINGS, 2004, 3326 : 538 - 538
  • [6] Random fuzzy programming models for minimum spanning tree problem
    Yu, Yueshan
    Ga, Jinwu
    Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 465 - 469
  • [7] A genetic algorithm for the Capacitated Minimum Spanning Tree problem
    de Lacerda, Estefane George Macedo
    de Medeiros, Manoel Firmino
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 725 - +
  • [8] A Distributed Parallel Algorithm for the Minimum Spanning Tree Problem
    Mazeev, Artem
    Semenov, Alexander
    Simonov, Alexey
    PARALLEL COMPUTATIONAL TECHNOLOGIES, PCT 2017, 2017, 753 : 101 - 113
  • [9] A memetic algorithm for the biobjective minimum spanning tree problem
    Rocha, Daniel A. M.
    Gouvea Goldbarg, Elizabeth F.
    Goldbarg, Marco Cesar
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2006, 3906 : 222 - 233
  • [10] An Algorithm for the Minimum Spanning Tree Problem with Uncertain Structures
    Hernandes, F.
    Lourenco, M. H. R. S.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (12) : 3885 - 3889