Hypergraph Contrastive Learning for Electronic Health Records

被引:0
|
作者
Cai, Derun [1 ,2 ]
Sun, Chenxi [1 ,2 ]
Song, Moxian [1 ,2 ]
Zhang, Baofeng [1 ,2 ]
Hong, Shenda [3 ,4 ]
Li, Hongyan [1 ,2 ]
机构
[1] Peking Univ, Sch Artificial Intelligence, Beijing, Peoples R China
[2] Peking Univ, Key Lab Machine Percept, Minist Educ, Beijing, Peoples R China
[3] Peking Univ, Natl Inst Hlth Data Sci, Beijing, Peoples R China
[4] Peking Univ, Inst Med Technol, Hlth Sci Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electronic Health Records (EHR) is the repository of patients' involved medical codes in the hospital, including diagnosis codes, medication codes, procedure codes, lab codes, and so on. EHR inherently contains various kinds of relationships such as the code-code, the patient-patient, and the patient-code relationship. Recent research shows that graph representation learning can be an effective tool for capturing complex relationships. However, none of the existing methods considered high-order interactions between patients and medical codes or considered the three relationships together. In this paper, we propose Hypergraph Contrastive Learning (HCL), to jointly learn patient embeddings and code embeddings from the combination of the above three relationships. HCL first constructs a hypergraph from the EHR data. Then, the medical code graph and the patient graph are constructed based on the hypergraph. Empowered with hypergraph attention network, Transformer, and graph attention network, HCL learns representations from three graphs respectively. Next, contrastive learning is applied to aggregate information from these graphs. Finally, the learned representations can support downstream tasks in supervised learning settings and self-supervised learning settings. Experiments are conducted on eICU and MIMIC-III datasets with mortality prediction and readmission prediction tasks. Results show that our method outperforms almost all compared methods on all evaluation metrics and HCL can learn patient representations from medical codes even without labeled data.
引用
收藏
页码:127 / 135
页数:9
相关论文
共 50 条
  • [21] Hypergraph User Embeddings and Session Contrastive Learning for POI Recommendation
    Zhang, Yan
    Wang, Bin
    Zhang, Qian
    Zhu, Sulei
    Ma, Yan
    IEEE ACCESS, 2025, 13 : 17983 - 17995
  • [22] Multi-Channel Hypergraph Contrastive Learning for Matrix Completion
    Li, Xiang
    Shui, Changsheng
    Yu, Yanwei
    Huang, Chao
    Zhao, Zhongying
    Dong, Junyu
    arXiv,
  • [23] HyperRegion: Integrating Graph and Hypergraph Contrastive Learning for Region Embeddings
    Deng, Mingyu
    Chen, Chao
    Zhang, Wanyi
    Zhao, Jie
    Yang, Wei
    Guo, Suiming
    Pu, Huayan
    Luo, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3667 - 3684
  • [24] Scalable and accurate deep learning with electronic health records
    Alvin Rajkomar
    Eyal Oren
    Kai Chen
    Andrew M. Dai
    Nissan Hajaj
    Michaela Hardt
    Peter J. Liu
    Xiaobing Liu
    Jake Marcus
    Mimi Sun
    Patrik Sundberg
    Hector Yee
    Kun Zhang
    Yi Zhang
    Gerardo Flores
    Gavin E. Duggan
    Jamie Irvine
    Quoc Le
    Kurt Litsch
    Alexander Mossin
    Justin Tansuwan
    De Wang
    James Wexler
    Jimbo Wilson
    Dana Ludwig
    Samuel L. Volchenboum
    Katherine Chou
    Michael Pearson
    Srinivasan Madabushi
    Nigam H. Shah
    Atul J. Butte
    Michael D. Howell
    Claire Cui
    Greg S. Corrado
    Jeffrey Dean
    npj Digital Medicine, 1
  • [25] Machine Learning and Electronic Health Records: A Paradigm Shift
    Adkins, Daniel E.
    AMERICAN JOURNAL OF PSYCHIATRY, 2017, 174 (02): : 93 - 94
  • [26] Deep Stable Representation Learning on Electronic Health Records
    Luo, Yingtao
    Liu, Zhaocheng
    Liu, Qiang
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 1077 - 1082
  • [27] Scalable and accurate deep learning with electronic health records
    Rajkomar, Alvin
    Oren, Eyal
    Chen, Kai
    Dai, Andrew M.
    Hajaj, Nissan
    Hardt, Michaela
    Liu, Peter J.
    Liu, Xiaobing
    Marcus, Jake
    Sun, Mimi
    Sundberg, Patrik
    Yee, Hector
    Zhang, Kun
    Zhang, Yi
    Flores, Gerardo
    Duggan, Gavin E.
    Irvine, Jamie
    Quoc Le
    Litsch, Kurt
    Mossin, Alexander
    Tansuwan, Justin
    Wang, De
    Wexler, James
    Wilson, Jimbo
    Ludwig, Dana
    Volchenboum, Samuel L.
    Chou, Katherine
    Pearson, Michael
    Madabushi, Srinivasan
    Shah, Nigam H.
    Butte, Atul J.
    Howell, Michael D.
    Cui, Claire
    Corrado, Greg S.
    Dean, Jeffrey
    NPJ DIGITAL MEDICINE, 2018, 1
  • [28] Multi-view Hypergraph Contrastive Policy Learning for Conversational Recommendation
    Zhao, Sen
    Wei, Wei
    Mao, Xian-Ling
    Zhu, Shuai
    Yang, Minghui
    Wen, Zujie
    Chen, Dangyang
    Zhu, Feida
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 654 - 664
  • [29] Prediction of Graduation Development Based on Hypergraph Contrastive Learning With Imbalanced Sampling
    Ouyang, Yong
    Feng, Tuo
    Gao, Rong
    Xu, Yubin
    Liu, Jinghang
    IEEE ACCESS, 2023, 11 : 89881 - 89895
  • [30] Interactive, Enhanced Dual Hypergraph Model for Explainable Contrastive Learning Recommendation
    Li, Jin
    Gao, Rong
    Yan, Lingyu
    Liu, Donghua
    Wan, Xiang
    Wu, Xinyun
    Hu, Jiwei
    ELECTRONICS, 2025, 14 (02):