Machine Learning and Electronic Health Records: A Paradigm Shift

被引:31
|
作者
Adkins, Daniel E. [1 ,2 ]
机构
[1] Univ Utah, Dept Psychiat, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Sociol, Salt Lake City, UT 84112 USA
来源
AMERICAN JOURNAL OF PSYCHIATRY | 2017年 / 174卷 / 02期
关键词
D O I
10.1176/appi.ajp.2016.16101169
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
引用
收藏
页码:93 / 94
页数:2
相关论文
共 50 条
  • [1] Subphenotyping depression using machine learning and electronic health records
    Xu, Zhenxing
    Wang, Fei
    Adekkanattu, Prakash
    Bose, Budhaditya
    Vekaria, Veer
    Brandt, Pascal
    Jiang, Guoqian
    Kiefer, Richard C.
    Luo, Yuan
    Pacheco, Jennifer A.
    Rasmussen, Luke V.
    Xu, Jie
    Alexopoulos, George
    Pathak, Jyotishman
    LEARNING HEALTH SYSTEMS, 2020, 4 (04):
  • [2] A MACHINE LEARNING MODEL FOR CANCER BIOMARKER IDENTIFICATION IN ELECTRONIC HEALTH RECORDS
    Ambwani, G.
    Cohen, A.
    Estevez, M.
    Singh, N.
    Adamson, B.
    Nussbaum, N. C.
    Birnbaum, B.
    VALUE IN HEALTH, 2019, 22 : S334 - S334
  • [3] Data Analytics and Machine Learning for Disease Identification in Electronic Health Records
    Benke, Kurt K.
    JAMA OPHTHALMOLOGY, 2019, 137 (05) : 497 - 498
  • [4] Using Electronic Health Records and Machine Learning to Predict Postpartum Depression
    Wang, Shuojia
    Pathak, Jyotishman
    Zhang, Yiye
    MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL, 2019, 264 : 888 - 892
  • [5] Predicting opioid dependence from electronic health records with machine learning
    Ellis, Randall J.
    Wang, Zichen
    Genes, Nicholas
    Ma'ayan, Avi
    BIODATA MINING, 2019, 12 (1)
  • [6] Using Machine Learning and Electronic Health Records to Predict Postpartum Depression
    Zhang, Yiye
    Joly, Rochelle
    Hermann, Alison
    Pathak, Jyotishman
    OBSTETRICS AND GYNECOLOGY, 2020, 135 : 59S - 60S
  • [7] Using machine learning to detect sarcopenia from electronic health records
    Luo, Xiao
    Ding, Haoran
    Broyles, Andrea
    Warden, Stuart J.
    Moorthi, Ranjani N.
    Imel, Erik A.
    DIGITAL HEALTH, 2023, 9
  • [8] A machine learning approach to identifying delirium from electronic health records
    Kim, Jae Hyun
    Hua, May
    Whittington, Robert A.
    Lee, Junghwan
    Liu, Cong
    Ta, Casey N.
    Marcantonio, Edward R.
    Goldberg, Terry E.
    Weng, Chunhua
    JAMIA OPEN, 2022, 5 (02)
  • [9] ENSEMBLE MACHINE LEARNING FOR SCREENING CARDIOVASCULAR DISEASES IN ELECTRONIC HEALTH RECORDS
    Stevens, C.
    Mahani, A.
    Ray, K.
    Vallejo-Vaz, A.
    Sharabiani, M.
    ATHEROSCLEROSIS, 2023, 379 : S194 - S194
  • [10] Machine learning approaches for electronic health records phenotyping: a methodical review
    Yang, Siyue
    Varghese, Paul
    Stephenson, Ellen
    Tu, Karen
    Gronsbell, Jessica
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2023, 30 (02) : 367 - 381