Machine Learning and Electronic Health Records: A Paradigm Shift

被引:31
|
作者
Adkins, Daniel E. [1 ,2 ]
机构
[1] Univ Utah, Dept Psychiat, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Sociol, Salt Lake City, UT 84112 USA
来源
AMERICAN JOURNAL OF PSYCHIATRY | 2017年 / 174卷 / 02期
关键词
D O I
10.1176/appi.ajp.2016.16101169
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
引用
收藏
页码:93 / 94
页数:2
相关论文
共 50 条
  • [31] Machine Learning: The Next Paradigm Shift in Medical Education
    James, Cornelius A.
    Wheelock, Kevin M.
    Woolliscroft, James O.
    ACADEMIC MEDICINE, 2021, 96 (07) : 954 - 957
  • [32] An inclusive survey on machine learning for CRM: a paradigm shift
    Singh, Narendra
    Singh, Pushpa
    Gupta, Mukul
    DECISION, 2020, 47 (04) : 447 - 457
  • [33] An inclusive survey on machine learning for CRM: a paradigm shift
    Narendra Singh
    Pushpa Singh
    Mukul Gupta
    DECISION, 2020, 47 : 447 - 457
  • [34] Federated Learning for Electronic Health Records
    Dang, Trung Kien
    Lan, Xiang
    Weng, Jianshu
    Feng, Mengling
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (05)
  • [35] Benchmarking emergency department prediction models with machine learning and public electronic health records
    Feng Xie
    Jun Zhou
    Jin Wee Lee
    Mingrui Tan
    Siqi Li
    Logasan S/O Rajnthern
    Marcel Lucas Chee
    Bibhas Chakraborty
    An-Kwok Ian Wong
    Alon Dagan
    Marcus Eng Hock Ong
    Fei Gao
    Nan Liu
    Scientific Data, 9
  • [36] Estimation of postpartum depression risk from electronic health records using machine learning
    Amit, Guy
    Girshovitz, Irena
    Marcus, Karni
    Zhang, Yiye
    Pathak, Jyotishman
    Bar, Vered
    Akiva, Pinchas
    BMC PREGNANCY AND CHILDBIRTH, 2021, 21 (01)
  • [37] Machine Learning Based Text Mining in Electronic Health Records: Cardiovascular Patient Cases
    Sikorskiy, Sergey
    Metsker, Oleg
    Yakovlev, Alexey
    Kovalchuk, Sergey
    COMPUTATIONAL SCIENCE - ICCS 2018, PT III, 2018, 10862 : 818 - 824
  • [38] Predicting Causes of Death from Structured Electronic Health Records Using Machine Learning
    Al-Garad, Mohammed
    Reeves, Ruth M.
    Desai, Rishi J.
    LeNoue-Newton, Michele
    Park, Daniel
    Wang, Shirley V.
    Maro, Judith C.
    Fuller, Candace C.
    Lin, Kueiyu Joshua
    Hernandez-Munoz, Jose J.
    Kuzucan, Aida
    Wang, Xi
    Pillai, Haritha
    Ngan, Kerry
    Whitaker, Jill
    Deere, Jessica
    McLemore, Michael F.
    Westerman, Dax
    Matheny, Michael E.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2024, 33 : 71 - 72
  • [39] A Machine Learning Framework Integrating Electronic Health Records for Survival Prognostication in Cervix Cancer
    Malik, N.
    Lichter, K.
    Yoshida, E. J.
    Cunha, J. A. M.
    Hsu, I. C. J.
    Valdes, G.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E529 - E529
  • [40] Predicting polycystic ovary syndrome with machine learning algorithms from electronic health records
    Zad, Zahra
    Jiang, Victoria S.
    Wolf, Amber T.
    Wang, Taiyao
    Cheng, J. Jojo
    Paschalidis, Ioannis Ch.
    Mahalingaiah, Shruthi
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15