4-D Cone-Beam CT Reconstruction via Diffusion Model and Motion Compensation

被引:0
|
作者
Wang, Xianghong [1 ]
Ou, Zhengwei [2 ,3 ]
Jin, Peng [1 ]
Xie, Jiayi [4 ,5 ]
Teng, Ze [4 ,6 ]
Xu, Lei [3 ,7 ]
Du, Jichen [8 ]
Ding, Mingchao [8 ]
Chen, Yang [9 ,10 ]
Niu, Tianye [3 ,8 ]
机构
[1] Inst Biomed Engn, Shenzhen Bay Lab, Shenzhen 518107, Peoples R China
[2] Southeast Univ, Coll Software Engn, Nanjing 210096, Peoples R China
[3] Shenzhen Bay Lab, Shenzhen 518107, Peoples R China
[4] Peking Univ, Hosp 3, Dept Radiol, Beijing 100191, Peoples R China
[5] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[6] Chinese Acad Med Sci, Natl Canc Ctr, Natl Clin Res Ctr Canc, Dept Radiol,Canc Hosp,Peking Union Med Coll, Beijing 100006, Peoples R China
[7] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Radiat Oncol, Xian 710061, Peoples R China
[8] Peking Univ, Aerosp Ctr Hosp, Aerosp Sch Clin Med, Beijing 100049, Peoples R China
[9] Southeast Univ, Lab Image Sci & Technol, Nanjing 210096, Peoples R China
[10] Ctr Rech Informat Biomed SinoFrancais, F-35042 Rennes, France
基金
北京市自然科学基金;
关键词
Image reconstruction; Biomedical imaging; Accuracy; Three-dimensional displays; Diffusion models; Computed tomography; Standards; 4-D cone-beam computed tomography (4-D CBCT); deep learning; motion compensation (MoCo); sparse-view CT reconstruction;
D O I
10.1109/TRPMS.2024.3449155
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
4-Dcone-beam computed tomography (4-D CBCT) has recently been recognized as a proficient technique in mitigating motion artifacts attributed to respiratory organ movement. The primary challenges in 4-D CBCT reconstruction encompass the precision in projection grouping, the efficacy in reconstructing from sparsely sampled data, and the accuracy in deformation field estimation. To surmount these challenges, we propose an innovative approach that integrates meticulous respiratory curve extraction for projection grouping and utilizes a diffusion model network with motion compensation (MoCo) techniques targeted at significantly enhancing image quality. An object detection network is employed to ascertain the exact position of the diaphragm, which is then normalized to formulate the respiratory curve. Further, we employ a U-Net architecture-based diffusion model, which integrates attention mechanisms to enhance sparse-view reconstruction and reduce artifacts through Guided-Diffusion. Deviating from conventional optical flow methods, our approach introduces an unsupervised registration network for deformation vector field (DVF) in phase-enhanced images. This DVF is then utilized in a motion-compensated, ordered-subset, simultaneous algebraic reconstruction technique, culminating in the generation of 4-D CBCT images. The efficacy of this method has been substantiated through validation on both simulated and clinical datasets, with the results from comparative experiments indicating promising outcomes.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 50 条
  • [31] Motion compensation in extremity cone-beam computed tomography
    Sisniega, Alejandro
    Thawait, Gaurav K.
    Shakoor, Delaram
    Siewerdsen, Jeffrey H.
    Demehri, Shadpour
    Zbijewski, Wojciech
    SKELETAL RADIOLOGY, 2019, 48 (12) : 1999 - 2007
  • [32] Motion compensation in extremity cone-beam computed tomography
    Alejandro Sisniega
    Gaurav K. Thawait
    Delaram Shakoor
    Jeffrey H. Siewerdsen
    Shadpour Demehri
    Wojciech Zbijewski
    Skeletal Radiology, 2019, 48 : 1999 - 2007
  • [33] High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization
    Zhang, Hua
    Ma, Jianhua
    Bian, Zhaoying
    Zeng, Dong
    Feng, Qianjin
    Chen, Wufan
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (08): : 3313 - 3329
  • [34] Evaluation of a 4D Cone-Beam CT Reconstruction Approach Using an Anthropomorphic Phantom
    Yaniv, Ziv
    Boese, Ian
    Sarmiento, Marily
    Cleary, Kevin
    INFORMATION PROCESSING IN COMPUTER-ASSISTED INTERVENTIONS, 2010, 6135 : 147 - +
  • [35] Evaluation of a 4D Cone-Beam CT Reconstruction Approach using a Simulation Framework
    Hartl, Alexander
    Yaniv, Ziv
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 5729 - 5732
  • [36] A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaginga)
    Yan, Hao
    Zhen, Xin
    Folkerts, Michael
    Li, Yongbao
    Pan, Tinsu
    Cervino, Laura
    Jiang, Steve B.
    Jia, Xun
    MEDICAL PHYSICS, 2014, 41 (07)
  • [37] Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion
    Sisniega, A.
    Stayman, J. W.
    Yorkston, J.
    Siewerdsen, J. H.
    Zbijewski, W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (09): : 3712 - 3734
  • [38] Motion Compensation Using Range Imaging in C-Arm Cone-Beam CT
    Bier, Bastian
    Unberath, Mathias
    Geimer, Tobias
    Maier, Jennifer
    Gold, Garry
    Levenston, Marc
    Fahrig, Rebecca
    Maier, Andreas
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2017), 2017, 723 : 561 - 570
  • [39] Quantitative cone-beam CT reconstruction with polyenergetic scatter model fusion
    Mason, Jonathan H.
    Perelli, Alessandro
    Nailon, William H.
    Davies, Mike E.
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (22):
  • [40] SURROGATE-DRIVEN MOTION MODEL FOR MOTION COMPENSATED CONE-BEAM CT RECONSTRUCTION USING UNSORTED PROJECTION DATA
    Huang, Yuliang
    Thielemans, Kris
    McClelland, Jamie R.
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,