4-D Cone-Beam CT Reconstruction via Diffusion Model and Motion Compensation

被引:0
|
作者
Wang, Xianghong [1 ]
Ou, Zhengwei [2 ,3 ]
Jin, Peng [1 ]
Xie, Jiayi [4 ,5 ]
Teng, Ze [4 ,6 ]
Xu, Lei [3 ,7 ]
Du, Jichen [8 ]
Ding, Mingchao [8 ]
Chen, Yang [9 ,10 ]
Niu, Tianye [3 ,8 ]
机构
[1] Inst Biomed Engn, Shenzhen Bay Lab, Shenzhen 518107, Peoples R China
[2] Southeast Univ, Coll Software Engn, Nanjing 210096, Peoples R China
[3] Shenzhen Bay Lab, Shenzhen 518107, Peoples R China
[4] Peking Univ, Hosp 3, Dept Radiol, Beijing 100191, Peoples R China
[5] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[6] Chinese Acad Med Sci, Natl Canc Ctr, Natl Clin Res Ctr Canc, Dept Radiol,Canc Hosp,Peking Union Med Coll, Beijing 100006, Peoples R China
[7] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Radiat Oncol, Xian 710061, Peoples R China
[8] Peking Univ, Aerosp Ctr Hosp, Aerosp Sch Clin Med, Beijing 100049, Peoples R China
[9] Southeast Univ, Lab Image Sci & Technol, Nanjing 210096, Peoples R China
[10] Ctr Rech Informat Biomed SinoFrancais, F-35042 Rennes, France
基金
北京市自然科学基金;
关键词
Image reconstruction; Biomedical imaging; Accuracy; Three-dimensional displays; Diffusion models; Computed tomography; Standards; 4-D cone-beam computed tomography (4-D CBCT); deep learning; motion compensation (MoCo); sparse-view CT reconstruction;
D O I
10.1109/TRPMS.2024.3449155
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
4-Dcone-beam computed tomography (4-D CBCT) has recently been recognized as a proficient technique in mitigating motion artifacts attributed to respiratory organ movement. The primary challenges in 4-D CBCT reconstruction encompass the precision in projection grouping, the efficacy in reconstructing from sparsely sampled data, and the accuracy in deformation field estimation. To surmount these challenges, we propose an innovative approach that integrates meticulous respiratory curve extraction for projection grouping and utilizes a diffusion model network with motion compensation (MoCo) techniques targeted at significantly enhancing image quality. An object detection network is employed to ascertain the exact position of the diaphragm, which is then normalized to formulate the respiratory curve. Further, we employ a U-Net architecture-based diffusion model, which integrates attention mechanisms to enhance sparse-view reconstruction and reduce artifacts through Guided-Diffusion. Deviating from conventional optical flow methods, our approach introduces an unsupervised registration network for deformation vector field (DVF) in phase-enhanced images. This DVF is then utilized in a motion-compensated, ordered-subset, simultaneous algebraic reconstruction technique, culminating in the generation of 4-D CBCT images. The efficacy of this method has been substantiated through validation on both simulated and clinical datasets, with the results from comparative experiments indicating promising outcomes.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 50 条
  • [21] Image-based deformable motion compensation for interventional cone-beam CT
    Sisniega, A.
    Capostagno, S.
    Zbijewski, W.
    Weiss, C. R.
    Ehtiati, T.
    Siewerdsen, J. H.
    MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [22] 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling
    Zhong, Zichun
    Gu, Xuejun
    Mao, Weihua
    Wang, Jing
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (03): : 996 - 1020
  • [23] 4D Cone-Beam CT Reconstruction Using Multi-Organ Meshes for Sliding Motion Modeling
    Zhong, Z.
    Gu, X.
    Iyengar, P.
    Mao, W.
    Guo, X.
    Wang, J.
    MEDICAL PHYSICS, 2015, 42 (06) : 3730 - 3731
  • [24] Motion compensated iterative reconstruction of a region of interest in cardiac cone-beam CT
    Isola, A. A.
    Ziegler, A.
    Schaefer, D.
    Koehler, T.
    Niessen, W. J.
    Grass, M.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2010, 34 (02) : 149 - 159
  • [25] Exact Interior Reconstruction with Cone-Beam CT
    Ye, Yangbo
    Yu, Hengyong
    Wang, Ge
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2007, 2007
  • [26] Iterative cardiac cone-beam CT reconstruction
    Nielsen, T
    Manzke, R
    Koehler, T
    Grass, M
    Proksa, R
    MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 : 2003 - 2014
  • [27] Cone-beam CT reconstruction for planar object
    Liu, Tong
    NDT & E INTERNATIONAL, 2012, 45 (01) : 9 - 15
  • [28] Improved Cone-Beam Reconstruction Using a Prior Breathing Motion Model
    Lauria, M.
    Singhrao, K.
    Lewis, J. H.
    O'Connell, D.
    Santhanam, A.
    Naumann, L. M.
    Lee, P.
    Low, D.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : S88 - S88
  • [29] Cone-beam reconstruction for micro-CT
    Wang, G
    Jiang, M
    Lee, SW
    Liu, H
    Hoffman, E
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 384 - 387
  • [30] 3D cone-beam CT reconstruction for circular trajectories
    Grass, M
    Köhler, T
    Proksa, R
    PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (02): : 329 - 347