Exploring Neimark-Sacker Bifurcation and Chaos Control in a Tri-species Discrete-Time Model

被引:0
|
作者
Goldar, Sujay [1 ]
Hassan, Sk. Sarif [1 ]
Das, Krishna Pada [2 ]
Mohsen, Ahmed A. [3 ]
Bahlool, Dahlia Khaled [4 ]
Al-Mdallal, Qasem [5 ]
Rana, Sourav [6 ]
Gupta, Vikas [7 ]
Sardar, Purnendu [8 ]
机构
[1] Pingla Thana Mahavidyalaya, Dept Math, West Midnapore 721140, West Bengal, India
[2] Mahadevananda Mahavidyalaya, Dept Math, Kolkata 700120, India
[3] Open Educ Coll, Dept Math, Baghdad, Iraq
[4] Univ Baghdad, Coll Sci, Dept Math, Baghdad, Iraq
[5] UAE Univ, Dept Math Sci, Al Ain 17551, U Arab Emirates
[6] Visva Bharati Univ, Dept Stat, Santini Ketan 731235, West Bengal, India
[7] LNM Inst Informat Technol, Ctr Math & Financial Comp, Dept Math, Jaipur 302031, Rajasthan, India
[8] Jadavpur Univ, Ctr Math Biol & Ecol, Dept Math, 188 Raja SC Mallick Rd, Kolkata 700032, India
关键词
Ecological dynamics; Discrete time model; Stability analysis; Neimark-Sacker bifurcation; Period-doubling bifurcation; Chaos; PERIOD-DOUBLING BIFURCATION; PREDATOR-PREY SYSTEM; DYNAMICS ANALYSIS; FOOD; BEHAVIOR;
D O I
10.1007/s40995-025-01790-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents a three-dimensional discrete-time ecological model to elucidate the intricate dynamics among three distinct species within an ecosystem. This approach extends traditional two-dimensional models, offering a more comprehensive perspective on ecological interactions. We identify all biologically feasible equilibria and perform a local stability analysis for each equilibrium point. Through bifurcation analysis (Neimark-Sacker and period-doubling bifurcations), we successfully demonstrate chaotic attractors via period doubling in the discrete-time model and implement chaos control through numerical simulations. By integrating this mathematical model, we derive ecological insights that contribute to informed conservation and management strategies, promoting sustainable biodiversity preservation.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Neimark-Sacker Bifurcation and Chaos Control in a Fractional-Order Plant-Herbivore Model
    Din, Qamar
    Elsadany, A. A.
    Khalil, Hammad
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [32] Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator-prey model with harvesting
    Liu, Wei
    Jiang, Yaolin
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (01)
  • [33] Stability and Neimark-Sacker Bifurcation Analysis for a Discrete Genetic Network
    Liu Feng
    Yin Xiang
    Wei Longsheng
    Sun Fenglan
    Wang Hua O
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1141 - 1144
  • [34] Neimark-Sacker bifurcation for the discrete-delay Kaldor-Kalecki model
    Dobrescu, Loretti I.
    Opris, Dumitru
    CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2405 - 2413
  • [35] Neimark-Sacker bifurcation in a tritrophic model with defense in the prey
    Ble, Gamaliel
    Angel Dela-Rosa, Miguel
    CHAOS SOLITONS & FRACTALS, 2019, 123 : 124 - 139
  • [36] Controlling Neimark-Sacker Bifurcation in Delayed Species Model Using Feedback Controller
    Ran, Jie
    Liu, Yanmin
    He, Jun
    Li, Xiang
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [37] Neimark-Sacker Bifurcation and Controlling Chaos in a Three-Species Food Chain Model through the OGY Method
    Guo Feng
    Ding Yin
    Li Jiacheng
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [38] Stability and Neimark-Sacker bifurcation for a discrete Nicholson's blowflies model with proportional delay
    Pan, Zhikang
    Li, Xianyi
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (02) : 250 - 260
  • [39] Analysis of Stochastic Ricker Model in a Zone of Neimark-Sacker Bifurcation
    Ryashko, Lev
    Pisarchik, Alexander N.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2016 (ICCMSE-2016), 2016, 1790
  • [40] Codimension-2 bifurcations on the curve of the Neimark–Sacker bifurcation for a discrete-time chemical model
    Zohreh Eskandari
    R. Khoshsiar Ghaziani
    Zakieh Avazzadeh
    Bo Li
    Journal of Mathematical Chemistry, 2023, 61 : 1063 - 1076