Exploring Neimark-Sacker Bifurcation and Chaos Control in a Tri-species Discrete-Time Model

被引:0
|
作者
Goldar, Sujay [1 ]
Hassan, Sk. Sarif [1 ]
Das, Krishna Pada [2 ]
Mohsen, Ahmed A. [3 ]
Bahlool, Dahlia Khaled [4 ]
Al-Mdallal, Qasem [5 ]
Rana, Sourav [6 ]
Gupta, Vikas [7 ]
Sardar, Purnendu [8 ]
机构
[1] Pingla Thana Mahavidyalaya, Dept Math, West Midnapore 721140, West Bengal, India
[2] Mahadevananda Mahavidyalaya, Dept Math, Kolkata 700120, India
[3] Open Educ Coll, Dept Math, Baghdad, Iraq
[4] Univ Baghdad, Coll Sci, Dept Math, Baghdad, Iraq
[5] UAE Univ, Dept Math Sci, Al Ain 17551, U Arab Emirates
[6] Visva Bharati Univ, Dept Stat, Santini Ketan 731235, West Bengal, India
[7] LNM Inst Informat Technol, Ctr Math & Financial Comp, Dept Math, Jaipur 302031, Rajasthan, India
[8] Jadavpur Univ, Ctr Math Biol & Ecol, Dept Math, 188 Raja SC Mallick Rd, Kolkata 700032, India
关键词
Ecological dynamics; Discrete time model; Stability analysis; Neimark-Sacker bifurcation; Period-doubling bifurcation; Chaos; PERIOD-DOUBLING BIFURCATION; PREDATOR-PREY SYSTEM; DYNAMICS ANALYSIS; FOOD; BEHAVIOR;
D O I
10.1007/s40995-025-01790-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents a three-dimensional discrete-time ecological model to elucidate the intricate dynamics among three distinct species within an ecosystem. This approach extends traditional two-dimensional models, offering a more comprehensive perspective on ecological interactions. We identify all biologically feasible equilibria and perform a local stability analysis for each equilibrium point. Through bifurcation analysis (Neimark-Sacker and period-doubling bifurcations), we successfully demonstrate chaotic attractors via period doubling in the discrete-time model and implement chaos control through numerical simulations. By integrating this mathematical model, we derive ecological insights that contribute to informed conservation and management strategies, promoting sustainable biodiversity preservation.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Neimark-Sacker bifurcation in an Internet congestion control model
    Mircea, Gabriela
    Muntean, Mihaela
    PROCEEDINGS OF THE 12TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS , PTS 1-3: NEW ASPECTS OF COMPUTERS, 2008, : 849 - +
  • [22] Controlling Chaos and Neimark-Sacker Bifurcation in a Host-Parasitoid Model
    Din, Qamar
    Hussain, Mushtaq
    ASIAN JOURNAL OF CONTROL, 2019, 21 (03) : 1202 - 1215
  • [23] Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers
    Rahman, Aminur
    Blackmore, Denis
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 339 - 349
  • [24] Controlling Neimark-Sacker bifurcations in discrete-time multivariable systems
    D'Amico, Maria Belen
    Chen, Guanrong
    Paolini, Eduardo E.
    Moiola, Jorge L.
    SYSTEMS & CONTROL LETTERS, 2009, 58 (05) : 359 - 364
  • [25] Local feedback control of the Neimark-Sacker bifurcation
    Yaghoobi, H
    Abed, EH
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04): : 879 - 893
  • [26] Neimark-Sacker bifurcation in an discrete time dynamic system for Internet congestion
    Mircea, Gabriela
    Opris, Dumitru
    MICBE '09: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN BUSINESS AND ECONOMICS, 2009, : 186 - +
  • [27] Neimark-Sacker Bifurcation of Discrete Fractional Chaotic Systems
    Wu, Guo-Cheng
    Hou, Hu-Shuang
    Lozi, Rene
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (04):
  • [28] STABILITY AND NEIMARK-SACKER BIFURCATION OF A SEMI-DISCRETE POPULATION MODEL
    Wang, Cheng
    Li, Xianyi
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2014, 4 (04): : 419 - 435
  • [29] Neimark-Sacker bifurcation and stability analysis of a discrete-time prey-predator model with Allee effect in prey
    Kangalgil, Figen
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [30] Chaos and hyperchaos via secondary Neimark-Sacker bifurcation in a model of radiophysical generator
    Stankevich, Nataliya
    Kuznetsov, Alexander
    Popova, Elena
    Seleznev, Evgeniy
    NONLINEAR DYNAMICS, 2019, 97 (04) : 2355 - 2370