Exploring Neimark-Sacker Bifurcation and Chaos Control in a Tri-species Discrete-Time Model

被引:0
|
作者
Goldar, Sujay [1 ]
Hassan, Sk. Sarif [1 ]
Das, Krishna Pada [2 ]
Mohsen, Ahmed A. [3 ]
Bahlool, Dahlia Khaled [4 ]
Al-Mdallal, Qasem [5 ]
Rana, Sourav [6 ]
Gupta, Vikas [7 ]
Sardar, Purnendu [8 ]
机构
[1] Pingla Thana Mahavidyalaya, Dept Math, West Midnapore 721140, West Bengal, India
[2] Mahadevananda Mahavidyalaya, Dept Math, Kolkata 700120, India
[3] Open Educ Coll, Dept Math, Baghdad, Iraq
[4] Univ Baghdad, Coll Sci, Dept Math, Baghdad, Iraq
[5] UAE Univ, Dept Math Sci, Al Ain 17551, U Arab Emirates
[6] Visva Bharati Univ, Dept Stat, Santini Ketan 731235, West Bengal, India
[7] LNM Inst Informat Technol, Ctr Math & Financial Comp, Dept Math, Jaipur 302031, Rajasthan, India
[8] Jadavpur Univ, Ctr Math Biol & Ecol, Dept Math, 188 Raja SC Mallick Rd, Kolkata 700032, India
关键词
Ecological dynamics; Discrete time model; Stability analysis; Neimark-Sacker bifurcation; Period-doubling bifurcation; Chaos; PERIOD-DOUBLING BIFURCATION; PREDATOR-PREY SYSTEM; DYNAMICS ANALYSIS; FOOD; BEHAVIOR;
D O I
10.1007/s40995-025-01790-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents a three-dimensional discrete-time ecological model to elucidate the intricate dynamics among three distinct species within an ecosystem. This approach extends traditional two-dimensional models, offering a more comprehensive perspective on ecological interactions. We identify all biologically feasible equilibria and perform a local stability analysis for each equilibrium point. Through bifurcation analysis (Neimark-Sacker and period-doubling bifurcations), we successfully demonstrate chaotic attractors via period doubling in the discrete-time model and implement chaos control through numerical simulations. By integrating this mathematical model, we derive ecological insights that contribute to informed conservation and management strategies, promoting sustainable biodiversity preservation.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Neimark-Sacker bifurcation and chaos control in discrete-time predator-prey model with parasites
    Saeed, Umer
    Ali, Irfan
    Din, Qamar
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2527 - 2536
  • [2] Neimark-Sacker Bifurcation in a Discrete-Time Financial System
    Xin, Baogui
    Chen, Tong
    Ma, Junhai
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010
  • [3] Neimark-Sacker Bifurcation and Control of a Discrete Epidemic Model
    Yi, Na
    Liu, Peng
    Zhang, Qingling
    Shi, Shuhui
    2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 2, 2010, : 409 - 412
  • [4] Neimark-Sacker bifurcation and hybrid control in a discrete-time Lotka-Volterra model
    Khan, Abdul Qadeer
    Khalique, Tanzeela
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (09) : 5887 - 5904
  • [5] Supercritical Neimark-Sacker Bifurcation and Hybrid Control in a Discrete-Time Glycolytic Oscillator Model
    Khan, A. Q.
    Abdullah, E.
    Ibrahim, Tarek F.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [6] Controlling chaos and Neimark-Sacker bifurcation in a discrete-time predator-prey system
    Kangalgil, Figen
    Isik, Seval
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (05): : 1761 - 1776
  • [7] Supercritical Neimark-Sacker bifurcation of a discrete-time Nicholson-Bailey model
    Khan, A. Q.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4841 - 4852
  • [8] Neimark-Sacker Bifurcation of a Two-Dimensional Discrete-Time Chemical Model
    Khan, A. Q.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [9] Neimark–Sacker bifurcation and chaos control in discrete-time predator–prey model with parasites
    Umer Saeed
    Irfan Ali
    Qamar Din
    Nonlinear Dynamics, 2018, 94 : 2527 - 2536
  • [10] Subcritical Neimark-Sacker bifurcation and hybrid control in a discrete-time Phytoplankton-Zooplankton model
    Khan, A. Q.
    Javaid, M. B.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2022, 15 (04)