Injective edge colorings of degenerate graphs and the oriented chromatic number

被引:0
|
作者
Bradshaw, Peter [1 ]
Clow, Alexander [2 ]
Xu, Jingwei [1 ]
机构
[1] Univ Illinois, Dept Math, Champaign, IL 61801 USA
[2] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/j.ejc.2025.104139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G, an injective edge-coloring of G is a function fr : E(G) - N such that if fr(e) = fr(e '), then no third edge joins an endpoint of e and an endpoint of e '. The injective chromatic index of a graph G, written chi ' inj(G), is the minimum number of colors needed for an injective edge coloring of G. In this paper, we investigate the injective chromatic index of certain classes of degenerate graphs. First, we show that if G is a d-degenerate graph of maximum degree triangle, then chi ' inj(G) = O(d3 log triangle). Next, we show that if G is a graph of Euler genus g, then chi ' inj(G) <= (3+ o(1))g, which is tight when G is a clique. Finally, we show that the oriented chromatic number of a graph is at most exponential in its injective chromatic index. Using this fact, we prove that the oriented chromatic number of a graph embedded on a surface of Euler genus g has oriented chromatic number at most O(g6400), improving the previously known upper bound of 2O(g2 +epsilon) and resolving a conjecture of Aravind and Subramanian. (c) 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On the number of 3-edge colorings of cubic graphs
    Szegedy, C
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (01) : 113 - 120
  • [32] On game chromatic number of oriented network graphs
    Renganathan, Alagammai
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2025, 22 (01) : 55 - 59
  • [33] On injective chromatic polynomials of graphs
    Kishore, Anjaly
    Sunitha, M. S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (03)
  • [34] On the Independence Number of Edge Chromatic Critical Graphs
    Miao Lianying
    ARS COMBINATORIA, 2011, 98 : 471 - 481
  • [35] ON THE INDEPENDENCE NUMBER OF EDGE CHROMATIC CRITICAL GRAPHS
    Pang, Shiyou
    Miao, Lianying
    Song, Wenyao
    Miao, Zhengke
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (03) : 577 - 584
  • [36] On the edge chromatic vertex stability number of graphs
    Alikhani, Saeid
    Piri, Mohammad R.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 29 - 34
  • [37] CHROMATIC NUMBER OF GRAPHS AND EDGE FOLKMAN NUMBERS
    Nenov, Nedyalko D.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (08): : 1103 - 1110
  • [38] Maximizing the number of x-colorings of 4-chromatic graphs
    Erey, Aysel
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1419 - 1431
  • [39] Total Dominator Edge Chromatic Number of Graphs
    Li, Minhui
    Zhang, Shumin
    Wang, Caiyun
    Ye, Chengfu
    IAENG International Journal of Applied Mathematics, 2021, 51 (04) : 1 - 6
  • [40] Acyclic Edge Chromatic Number of Outerplanar Graphs
    Hou, Jian-Feng
    Wu, Jian-Liang
    Liu, Gui-Zhen
    Liu, Bin
    JOURNAL OF GRAPH THEORY, 2010, 64 (01) : 22 - 36