Injective edge colorings of degenerate graphs and the oriented chromatic number

被引:0
|
作者
Bradshaw, Peter [1 ]
Clow, Alexander [2 ]
Xu, Jingwei [1 ]
机构
[1] Univ Illinois, Dept Math, Champaign, IL 61801 USA
[2] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/j.ejc.2025.104139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G, an injective edge-coloring of G is a function fr : E(G) - N such that if fr(e) = fr(e '), then no third edge joins an endpoint of e and an endpoint of e '. The injective chromatic index of a graph G, written chi ' inj(G), is the minimum number of colors needed for an injective edge coloring of G. In this paper, we investigate the injective chromatic index of certain classes of degenerate graphs. First, we show that if G is a d-degenerate graph of maximum degree triangle, then chi ' inj(G) = O(d3 log triangle). Next, we show that if G is a graph of Euler genus g, then chi ' inj(G) <= (3+ o(1))g, which is tight when G is a clique. Finally, we show that the oriented chromatic number of a graph is at most exponential in its injective chromatic index. Using this fact, we prove that the oriented chromatic number of a graph embedded on a surface of Euler genus g has oriented chromatic number at most O(g6400), improving the previously known upper bound of 2O(g2 +epsilon) and resolving a conjecture of Aravind and Subramanian. (c) 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [22] On the Chromatic Edge Stability Number of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Nazanin Movarraei
    Graphs and Combinatorics, 2018, 34 : 1539 - 1551
  • [23] REGULAR GRAPHS AND EDGE CHROMATIC NUMBER
    FAUDREE, RJ
    SHEEHAN, J
    DISCRETE MATHEMATICS, 1984, 48 (2-3) : 197 - 204
  • [24] Edge-face chromatic number and edge chromatic number of simple plane graphs
    Luo, R
    Zhang, CQ
    JOURNAL OF GRAPH THEORY, 2005, 49 (03) : 234 - 256
  • [25] Strong edge-colorings for k-degenerate graphs
    Yu, Gexin
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1815 - 1818
  • [26] THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS
    Kierstead, Hal
    Mohar, Bojan
    Spacapan, Simon
    Yang, Daqing
    Zhu, Xuding
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1548 - 1560
  • [27] List injective colorings of planar graphs
    Borodin, O. V.
    Ivanova, A. O.
    DISCRETE MATHEMATICS, 2011, 311 (2-3) : 154 - 165
  • [28] ON THE NUMBER OF EDGE-COLORINGS OF REGULAR BIPARTITE GRAPHS
    SCHRIJVER, A
    DISCRETE MATHEMATICS, 1982, 38 (2-3) : 297 - 301
  • [29] On the total chromatic edge stability number and the total chromatic subdivision number of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 1 - 8
  • [30] On the oriented chromatic number of graphs with given excess
    Dolama, Mohammad Hosseini
    Sopena, Eric
    DISCRETE MATHEMATICS, 2006, 306 (13) : 1342 - 1350