ASUGNN: an asymmetric-unit-based graph neural network for crystal property prediction

被引:0
|
作者
Cao, Barnie [1 ]
Anderson, Daniel [2 ]
Davis, Luke [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Adv Mat Thrust, Guangzhou 511400, Peoples R China
[2] Shanghai Univ, Int Ctr Quantum & Mol Struct, Shanghai 200444, Peoples R China
来源
关键词
space groups; asymmetric units; graph neural networks; powder X-ray diffraction; XRD; formation energies; property prediction; ATTENTION;
D O I
10.1107/S1600576724011336
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Material properties can often be derived directly from fundamental equations governing electron behavior. In this study, we present an open-source asymmetric-unit-based graph neural network designed to capture atomic patterns and their corresponding electron distributions. By coarse-graining sites belonging to conjugate subgroups and analyzing reciprocal space through powder X-ray diffraction patterns, our model predicts key physical properties, including formation energy, band gap, bulk modulus and metal/non-metal classification. Our method demonstrates exceptional predictive accuracy for properties calculated using density functional theory across the Materials Project dataset. Our approach is compared with state-of-the-art models and exhibits impressively low error rates in zero-shot predictions.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 50 条
  • [41] Comparative Analysis of Conventional Machine Learning and Graph Neural Network Models for Perovskite Property Prediction
    Jin, Jirui
    Faraji, Somayeh
    Liu, Bin
    Liu, Mingjie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (39): : 16672 - 16683
  • [42] Graph Neural Network-based Delay Prediction Model Enhanced by Network Calculus
    Zhang, Lianming
    Yin, Benle
    Wang, Qian
    Dong, Pingping
    2023 IFIP NETWORKING CONFERENCE, IFIP NETWORKING, 2023,
  • [43] Research of Software Defect Prediction Model Based on Complex Network and Graph Neural Network
    Cui, Mengtian
    Long, Songlin
    Jiang, Yue
    Na, Xu
    ENTROPY, 2022, 24 (10)
  • [44] Mechanical Property Parameters Prediction of Tube Based on RBF Neural Network
    Jia Meihui
    Tang Chengtong
    Liu Jianhua
    Zhang Tian
    MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2, 2013, 300-301 : 882 - 888
  • [45] GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network
    Yang, Runtao
    Fu, Yao
    Zhang, Qian
    Zhang, Lina
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 150
  • [46] Graph Neural Network for Merger and Acquisition Prediction
    Li, Yinfei
    Shou, Jiafeng
    Treleaven, Philip
    Wang, Jun
    ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [47] Trajectory Prediction with Heterogeneous Graph Neural Network
    Li, Guanlue
    Luo, Guiyang
    Yuan, Quan
    Li, Jinglin
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 375 - 387
  • [48] Traffic Prediction with Graph Neural Network: A Survey
    Liu, Zhanghui
    Tan, Huachun
    CICTP 2021: ADVANCED TRANSPORTATION, ENHANCED CONNECTION, 2021, : 467 - 474
  • [49] Traffic Prediction With a Spectral Graph Neural Network
    Buapang, Sathita
    Muangsin, Veera
    2022 7TH INTERNATIONAL CONFERENCE ON BUSINESS AND INDUSTRIAL RESEARCH (ICBIR2022), 2022, : 341 - 346
  • [50] Integrating gated recurrent unit in graph neural network to improve infectious disease prediction: an attempt
    Liu, Xu-dong
    Hou, Bo-han
    Xie, Zhong-jun
    Feng, Ning
    Dong, Xiao-ping
    FRONTIERS IN PUBLIC HEALTH, 2024, 12