ASUGNN: an asymmetric-unit-based graph neural network for crystal property prediction

被引:0
|
作者
Cao, Barnie [1 ]
Anderson, Daniel [2 ]
Davis, Luke [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Adv Mat Thrust, Guangzhou 511400, Peoples R China
[2] Shanghai Univ, Int Ctr Quantum & Mol Struct, Shanghai 200444, Peoples R China
来源
关键词
space groups; asymmetric units; graph neural networks; powder X-ray diffraction; XRD; formation energies; property prediction; ATTENTION;
D O I
10.1107/S1600576724011336
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Material properties can often be derived directly from fundamental equations governing electron behavior. In this study, we present an open-source asymmetric-unit-based graph neural network designed to capture atomic patterns and their corresponding electron distributions. By coarse-graining sites belonging to conjugate subgroups and analyzing reciprocal space through powder X-ray diffraction patterns, our model predicts key physical properties, including formation energy, band gap, bulk modulus and metal/non-metal classification. Our method demonstrates exceptional predictive accuracy for properties calculated using density functional theory across the Materials Project dataset. Our approach is compared with state-of-the-art models and exhibits impressively low error rates in zero-shot predictions.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 50 条
  • [32] ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction
    Cheng, Danpeng
    Sha, Wuxin
    Han, Qigao
    Tang, Shun
    Zhong, Jun
    Du, Jinqiao
    Tian, Jie
    Cao, Yuan-Cheng
    ELECTROCHIMICA ACTA, 2024, 473
  • [33] Graph neural network based hydraulic turbine data stream prediction
    Li, Ning
    Ren, Jing
    Zhou, Xin
    Li, Jun
    Xue, Chen
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2022, 17 : 140 - 146
  • [34] Research on Commodities Constraint Optimization Based on Graph Neural Network Prediction
    Yang, Zhang
    Zuo, Zhihan
    Li, Haiying
    Zhao, Weiyi
    Qian, Du
    Tang, Mingjie
    IEEE ACCESS, 2023, 11 : 90131 - 90142
  • [35] Surface water quality prediction model based on graph neural network
    Xu J.-H.
    Wang J.-C.
    Chen L.
    Wu Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (04): : 601 - 607
  • [36] Optical Network Traffic Prediction Based on Graph Convolutional Neural Networks
    Gui, Yihan
    Wang, Danshi
    Guan, Luyao
    Zhang, Min
    2020 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2020), 2020,
  • [37] Attention-Based Graph Neural Network for Molecular Solubility Prediction
    Ahmad, Waciar
    Tayara, Hilal
    Chong, Kil To
    ACS OMEGA, 2023, 8 (03): : 3236 - 3244
  • [38] Graph neural network based coarse-grained mapping prediction
    Li, Zhiheng
    Wellawatte, Geemi P.
    Chakraborty, Maghesree
    Gandhi, Heta A.
    Xu, Chenliang
    White, Andrew D.
    CHEMICAL SCIENCE, 2020, 11 (35) : 9524 - 9531
  • [39] DDoS: a graph neural network based drug synergy prediction algorithm
    Schwarz, Kyriakos
    Pliego-Mendieta, Alicia
    Mollaysa, Amina
    Planas-Paz, Lara
    Pauli, Chantal
    Allam, Ahmed
    Krauthamm, Michael
    CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, 2024, 248 : 24 - 38
  • [40] SGNN-T: Space graph neural network coupled transformer for molecular property prediction
    Zhang, Taohong
    Xia, Chenglong
    Yang, Huguang
    Guo, Xuxu
    Zheng, Han
    Wulamu, Aziguli
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 246