An Edge-Enhanced Network for Polyp Segmentation

被引:3
|
作者
Tong, Yao [1 ,2 ]
Chen, Ziqi [3 ]
Zhou, Zuojian [1 ,2 ]
Hu, Yun [1 ,2 ]
Li, Xin [4 ]
Qiao, Xuebin [2 ,5 ]
机构
[1] Nanjing Univ Chinese Med, Sch Artificial Intelligence & Informat Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ Chinese Med, Jiangsu Prov Engn Res Ctr TCM Intelligence Hlth Se, Nanjing 210023, Peoples R China
[3] Tsinghua Univ, Vanke Sch Publ Hlth, Beijing 100084, Peoples R China
[4] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing 211100, Peoples R China
[5] Nanjing Univ Chinese Med, Sch Elderly Care Serv & Management, Nanjing 210023, Peoples R China
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 10期
基金
中国国家自然科学基金;
关键词
polyp segmentation; convolutional neural network; edge enhancement; attention mechanism;
D O I
10.3390/bioengineering11100959
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Colorectal cancer remains a leading cause of cancer-related deaths worldwide, with early detection and removal of polyps being critical in preventing disease progression. Automated polyp segmentation, particularly in colonoscopy images, is a challenging task due to the variability in polyp appearance and the low contrast between polyps and surrounding tissues. In this work, we propose an edge-enhanced network (EENet) designed to address these challenges by integrating two novel modules: the covariance edge-enhanced attention (CEEA) and cross-scale edge enhancement (CSEE) modules. The CEEA module leverages covariance-based attention to enhance boundary detection, while the CSEE module bridges multi-scale features to preserve fine-grained edge details. To further improve the accuracy of polyp segmentation, we introduce a hybrid loss function that combines cross-entropy loss with edge-aware loss. Extensive experiments show that the EENet achieves a Dice score of 0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, surpassing state-of-the-art models such as Polyp-PVT and PraNet. Furthermore, it records a Dice score of 0.9316 and an IoU of 0.8817 on the CVC-ClinicDB dataset, demonstrating its strong potential for clinical application in polyp segmentation. Ablation studies further validate the contribution of the CEEA and CSEE modules.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Multi-Agent Trajectory Prediction With Heterogeneous Edge-Enhanced Graph Attention Network
    Mo, Xiaoyu
    Huang, Zhiyu
    Xing, Yang
    Lv, Chen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 9554 - 9567
  • [32] Edge-enhanced maximally stable color regions
    Pan, Neng-Jie
    Yu, Hui-Min
    Yu, Hui-Min, 1600, Zhejiang University (48): : 1241 - 1247
  • [33] Edge-enhanced Raman scattering in Si nanostripes
    Poborchii, Vladimir
    Tada, Tetsuya
    Kanayama, Toshihiko
    APPLIED PHYSICS LETTERS, 2009, 94 (13)
  • [34] An Edge-Enhanced Hierarchical Graph-to-Tree Network for Math Word Problem Solving
    Wu, Qinzhuo
    Zhang, Qi
    Wei, Zhongyu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 1473 - 1482
  • [35] EEA-Net: edge-enhanced assistance network for infrared small target detection
    Wang, Chen
    Hu, Xiaopeng
    Gao, Xiang
    Wei, Haoyu
    Tao, Jiawei
    Wang, Fan
    MACHINE VISION AND APPLICATIONS, 2024, 35 (04)
  • [36] MSEANet: Multi-Scale Selective Edge Aware Network for Polyp Segmentation
    Liu, Botao
    Shi, Changqi
    Zhao, Ming
    ALGORITHMS, 2025, 18 (01)
  • [37] Edge-Guided Bidirectional-Attention Residual Network for Polyp Segmentation
    Wu, Lanhu
    Zhang, Miao
    Piao, Yongri
    Li, Zhiwei
    Lu, Huchuan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XIV, 2025, 15044 : 249 - 263
  • [38] ATENet: Adaptive Tiny-Object Enhanced Network for Polyp Segmentation
    Du, Xiaogang
    Wu, Yinghao
    Lei, Tao
    Gu, Dongxin
    Nie, Yinyin
    Nandi, Asoke K.
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2279 - 2284
  • [39] Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation
    Patel, Krushi
    Bur, Andres M.
    Wang, Guanghui
    2021 18TH CONFERENCE ON ROBOTS AND VISION (CRV 2021), 2021, : 181 - 188
  • [40] Edge-enhanced minimum-margin graph attention network for short text classification
    Ai, Wei
    Wei, Yingying
    Shao, Hongen
    Shou, Yuntao
    Meng, Tao
    Li, Keqin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251