An Edge-Enhanced Network for Polyp Segmentation

被引:3
|
作者
Tong, Yao [1 ,2 ]
Chen, Ziqi [3 ]
Zhou, Zuojian [1 ,2 ]
Hu, Yun [1 ,2 ]
Li, Xin [4 ]
Qiao, Xuebin [2 ,5 ]
机构
[1] Nanjing Univ Chinese Med, Sch Artificial Intelligence & Informat Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ Chinese Med, Jiangsu Prov Engn Res Ctr TCM Intelligence Hlth Se, Nanjing 210023, Peoples R China
[3] Tsinghua Univ, Vanke Sch Publ Hlth, Beijing 100084, Peoples R China
[4] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing 211100, Peoples R China
[5] Nanjing Univ Chinese Med, Sch Elderly Care Serv & Management, Nanjing 210023, Peoples R China
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 10期
基金
中国国家自然科学基金;
关键词
polyp segmentation; convolutional neural network; edge enhancement; attention mechanism;
D O I
10.3390/bioengineering11100959
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Colorectal cancer remains a leading cause of cancer-related deaths worldwide, with early detection and removal of polyps being critical in preventing disease progression. Automated polyp segmentation, particularly in colonoscopy images, is a challenging task due to the variability in polyp appearance and the low contrast between polyps and surrounding tissues. In this work, we propose an edge-enhanced network (EENet) designed to address these challenges by integrating two novel modules: the covariance edge-enhanced attention (CEEA) and cross-scale edge enhancement (CSEE) modules. The CEEA module leverages covariance-based attention to enhance boundary detection, while the CSEE module bridges multi-scale features to preserve fine-grained edge details. To further improve the accuracy of polyp segmentation, we introduce a hybrid loss function that combines cross-entropy loss with edge-aware loss. Extensive experiments show that the EENet achieves a Dice score of 0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, surpassing state-of-the-art models such as Polyp-PVT and PraNet. Furthermore, it records a Dice score of 0.9316 and an IoU of 0.8817 on the CVC-ClinicDB dataset, demonstrating its strong potential for clinical application in polyp segmentation. Ablation studies further validate the contribution of the CEEA and CSEE modules.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Edge-enhanced drawing in computer graphics
    Saito, Takafumi
    Takahashi, Tokiichiro
    Journal of information processing, 1992, 15 (02) : 235 - 242
  • [22] Edge enhancement and edge-enhanced correlation with photorefractive polymers
    Banerjee, PP
    Gad, E
    Hudson, T
    McMillen, D
    Abdeldayem, H
    Frazier, D
    Matsushita, K
    APPLIED OPTICS, 2000, 39 (29) : 5337 - 5346
  • [23] SegT: Separated edge-guidance transformer network for polyp segmentation
    Chen F.
    Ma H.
    Zhang W.
    Mathematical Biosciences and Engineering, 2023, 20 (10) : 17803 - 17821
  • [24] Edge-enhanced efficient network for remote sensing image super-resolution
    Zhang, Tianlin
    Chen, Hongzhen
    Chen, Shi
    Bian, Chunjiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (14) : 5324 - 5347
  • [25] Edge-Enhanced Dual-Stream Perception Network for Monocular Depth Estimation
    Liu, Zihang
    Wang, Quande
    ELECTRONICS, 2024, 13 (09)
  • [26] Texture analysis on the edge-enhanced fluence of VMAT
    Park, So-Yeon
    Park, Jong Min
    Sung, Wonmo
    Kim, Il Han
    Ye, Sung-Joon
    RADIATION ONCOLOGY, 2015, 10
  • [27] Texture analysis on the edge-enhanced fluence of VMAT
    So-Yeon Park
    Jong Min Park
    Wonmo Sung
    Il Han Kim
    Sung-Joon Ye
    Radiation Oncology, 10
  • [28] MOLECULAR COMPUTING FOR EDGE-ENHANCED LASER IMAGING
    SZU, H
    TATE, A
    CULLIN, D
    WALCH, M
    DEMSKE, D
    GARCIA, J
    PHUVAN, S
    CAVIRIS, N
    BIOSYSTEMS, 1992, 27 (04) : 179 - 188
  • [29] Gaussian mixture model for edge-enhanced images
    Cook, GW
    Delp, EJ
    JOURNAL OF ELECTRONIC IMAGING, 2004, 13 (04) : 731 - 737
  • [30] Edge-enhanced despeckling method for SAR images
    Wang, Lingxia
    Hou, Biao
    Jiao, Licheng
    Xu, Jing
    MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787