SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction

被引:1
|
作者
Liu, Yuansheng [1 ,2 ]
Xia, Xinyan [1 ]
Gong, Yongshun [3 ]
Song, Bosheng [1 ]
Zeng, Xiangxiang [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410086, Hunan, Peoples R China
[2] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Anhui, Peoples R China
[3] Shandong Univ, Sch Software, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug-target affinity prediction; Graph neural networks; Feature representation learning; Deep learning; DEEP LEARNING-MODEL;
D O I
10.1016/j.artmed.2024.102983
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate prediction of drug-target binding affinity (DTA) is essential in the field of drug discovery. Recently, scientists have been attempting to utilize artificial intelligence prediction to screen out a significant number of ineffective compounds, thereby mitigating labor and financial losses. While graph neural networks (GNNs) have been applied to DTA, existing GNNs have limitations in effectively extracting substructural features across various sizes. Functional groups play a crucial role in modulating molecular properties, but existing GNNs struggle with feature extraction from certain motifs due to scale mismatches. Additionally, sequence- based models for target proteins lack the integration of structural information. To address these limitations, we present SSR-DTA, a multi-layer graph network capable of adapting to diverse structural sizes, which can extract richer biological features, thereby improving the robustness and accuracy of predictions. Multi-layer GNNs enable the capture of molecular motifs across different scales, ranging from atomic to macrocyclic motifs. Furthermore, we introduce BiGNN to simultaneously learn sequence and structural information. Sequence information corresponds to the primary structure of proteins, while graph information represents the tertiary structure. BiGNN assimilates richer information compared to sequence-based methods while mitigating the impact of errors from predicted structures, resulting in more accurate predictions. Through rigorous experimental evaluations conducted on four benchmark datasets, we demonstrate the superiority of SSR-DTA over state-of-the-art models. Particularly, in comparison to state-of-the-art models, SSR-DTA demonstrates an impressive 20% reduction in mean squared error on the Davis dataset and a 5% reduction on the KIBA dataset, underscoring its potential as a valuable tool for advancing DTA prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] MMD-DTA: A Multi-Modal Deep Learning Framework for Drug-Target Binding Affinity and Binding Region Prediction
    Zhang, Qi
    Wei, Yuxiao
    Liao, Bo
    Liu, Liwei
    Zhang, Shengli
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 2200 - 2211
  • [32] Predicting Drug-Target Affinity Based on Recurrent Neural Networks and Graph Convolutional Neural Networks
    Tian, Qingyu
    Ding, Mao
    Yang, Hui
    Yue, Caibin
    Zhong, Yue
    Du, Zhenzhen
    Liu, Dayan
    Liu, Jiali
    Deng, Yufeng
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2022, 25 (04) : 634 - 641
  • [33] Drug-target affinity prediction using graph neural network and contact maps
    Jiang, Mingjian
    Li, Zhen
    Zhang, Shugang
    Wang, Shuang
    Wang, Xiaofeng
    Yuan, Qing
    Wei, Zhiqiang
    RSC ADVANCES, 2020, 10 (35) : 20701 - 20712
  • [34] Graph neural pre-training based drug-target affinity prediction
    Ye, Qing
    Sun, Yaxin
    FRONTIERS IN GENETICS, 2024, 15
  • [35] TransVAE-DTA: Transformer and variational autoencoder network for drug-target binding affinity prediction
    Zhou, Changjian
    Li, Zhongzheng
    Song, Jia
    Xiang, Wensheng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 244
  • [36] DeepNC: a framework for drug-target interaction prediction with graph neural networks
    Tran, Huu Ngoc Tran
    Thomas, J. Joshua
    Malim, Nurul Hashimah Ahamed Hassain
    PEERJ, 2022, 10
  • [37] Drug-target affinity prediction with extended graph learning-convolutional networks
    Qi, Haiou
    Yu, Ting
    Yu, Wenwen
    Liu, Chenxi
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [38] Drug-target Interaction Prediction By Combining Transformer and Graph Neural Networks
    Liu, Junkai
    Lu, Yaoyao
    Guan, Shixuan
    Jiang, Tengsheng
    Ding, Yijie
    Fu, Qiming
    Cui, Zhiming
    Wu, Hongjie
    CURRENT BIOINFORMATICS, 2024, 19 (04) : 316 - 326
  • [39] SAG-DTA: Prediction of Drug-Target Affinity Using Self-Attention Graph Network
    Zhang, Shugang
    Jiang, Mingjian
    Wang, Shuang
    Wang, Xiaofeng
    Wei, Zhiqiang
    Li, Zhen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
  • [40] MFF-DTA: Multi-scale feature fusion for drug-target affinity prediction
    Tang, Xiwei
    Ma, Wanjun
    Yang, Mengyun
    Li, Wenjun
    METHODS, 2024, 231 : 1 - 7