SAG-DTA: Prediction of Drug-Target Affinity Using Self-Attention Graph Network

被引:32
|
作者
Zhang, Shugang [1 ]
Jiang, Mingjian [2 ]
Wang, Shuang [3 ]
Wang, Xiaofeng [4 ]
Wei, Zhiqiang [1 ]
Li, Zhen [5 ]
机构
[1] Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266100, Peoples R China
[2] Qingdao Univ Technol, Sch Informat & Control Engn, Qingdao 266033, Peoples R China
[3] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
[4] MindRank AI Ltd, Hangzhou 311113, Peoples R China
[5] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
关键词
drug-target affinity; graph neural network; self-attention; BINDING-AFFINITY; PROTEIN;
D O I
10.3390/ijms22168993
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The prediction of drug-target affinity (DTA) is a crucial step for drug screening and discovery. In this study, a new graph-based prediction model named SAG-DTA (self-attention graph drug-target affinity) was implemented. Unlike previous graph-based methods, the proposed model utilized self-attention mechanisms on the drug molecular graph to obtain effective representations of drugs for DTA prediction. Features of each atom node in the molecular graph were weighted using an attention score before being aggregated as molecule representation. Various self-attention scoring methods were compared in this study. In addition, two pooing architectures, namely, global and hierarchical architectures, were presented and evaluated on benchmark datasets. Results of comparative experiments on both regression and binary classification tasks showed that SAG-DTA was superior to previous sequence-based or other graph-based methods and exhibited good generalization ability.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Drug-Target Affinity Prediction Based on Self-attention Graph Pooling and Mutual Interaction Neural Network
    Wang, Xizi
    Hu, Jing
    Zhang, Xiaolong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT III, 2023, 14088 : 776 - 790
  • [2] Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network
    Cheng, Zhongjian
    Yan, Cheng
    Wu, Fang-Xiang
    Wang, Jianxin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) : 2208 - 2218
  • [3] CSatDTA: Prediction of Drug-Target Binding Affinity Using Convolution Model with Self-Attention
    Ghimire, Ashutosh
    Tayara, Hilal
    Xuan, Zhenyu
    Chong, Kil To
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)
  • [4] Prediction of Drug-Target Affinity Using Attention Neural Network
    Tang, Xin
    Lei, Xiujuan
    Zhang, Yuchen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [5] GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information
    Liao, Jiaqi
    Chen, Haoyang
    Wei, Lesong
    Wei, Leyi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [6] SAGDTI: self-attention and graph neural network with multiple information representations for the prediction of drug-target interactions
    Li, Xiaokun
    Yang, Qiang
    Luo, Gongning
    Xu, Long
    Dong, Weihe
    Wang, Wei
    Dong, Suyu
    Wang, Kuanquan
    Xuan, Ping
    Gao, Xin
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [7] DeepMHADTA: Prediction of Drug-Target Binding Affinity Using Multi-Head Self-Attention and Convolutional Neural Network
    Deng, Lei
    Zeng, Yunyun
    Liu, Hui
    Liu, Zixuan
    Liu, Xuejun
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2022, 44 (05) : 2287 - 2299
  • [8] GTAMP-DTA: Graph transformer combined with attention mechanism for drug-target binding affinity prediction
    Tian, Chuangchuang
    Wang, Luping
    Cui, Zhiming
    Wu, Hongjie
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 108
  • [9] AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism
    Wu, Hongjie
    Liu, Junkai
    Jiang, Tengsheng
    Zou, Quan
    Qi, Shujie
    Cui, Zhiming
    Tiwari, Prayag
    Ding, Yijie
    NEURAL NETWORKS, 2024, 169 : 623 - 636
  • [10] MTAF-DTA: multi-type attention fusion network for drug-target affinity prediction
    Sun, Jinghong
    Wang, Han
    Mi, Jia
    Wan, Jing
    Gao, Jingyang
    BMC BIOINFORMATICS, 2024, 25 (01):