SAG-DTA: Prediction of Drug-Target Affinity Using Self-Attention Graph Network

被引:32
|
作者
Zhang, Shugang [1 ]
Jiang, Mingjian [2 ]
Wang, Shuang [3 ]
Wang, Xiaofeng [4 ]
Wei, Zhiqiang [1 ]
Li, Zhen [5 ]
机构
[1] Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266100, Peoples R China
[2] Qingdao Univ Technol, Sch Informat & Control Engn, Qingdao 266033, Peoples R China
[3] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
[4] MindRank AI Ltd, Hangzhou 311113, Peoples R China
[5] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
关键词
drug-target affinity; graph neural network; self-attention; BINDING-AFFINITY; PROTEIN;
D O I
10.3390/ijms22168993
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The prediction of drug-target affinity (DTA) is a crucial step for drug screening and discovery. In this study, a new graph-based prediction model named SAG-DTA (self-attention graph drug-target affinity) was implemented. Unlike previous graph-based methods, the proposed model utilized self-attention mechanisms on the drug molecular graph to obtain effective representations of drugs for DTA prediction. Features of each atom node in the molecular graph were weighted using an attention score before being aggregated as molecule representation. Various self-attention scoring methods were compared in this study. In addition, two pooing architectures, namely, global and hierarchical architectures, were presented and evaluated on benchmark datasets. Results of comparative experiments on both regression and binary classification tasks showed that SAG-DTA was superior to previous sequence-based or other graph-based methods and exhibited good generalization ability.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] NTMFF-DTA: Prediction of Drug-Target Affinity Based on Network Topology and Multi-feature Fusion
    Liu, Yuandong
    Liu, Youzhi
    Yang, Haoqin
    Zhang, Longbo
    Che, Kai
    Xing, Linlin
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2025,
  • [32] Self-Attention Based Molecule Representation for Predicting Drug-Target Interaction
    Shin, Bonggun
    Park, Sungsoo
    Kang, Keunsoo
    Ho, Joyce C.
    MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 106, 2019, 106
  • [33] HSGCL-DTA: Hybrid-scale Graph Contrastive Learning based Drug-Target Binding Affinity Prediction
    Ye, Hongyan
    Song, Yingying
    Wang, Binyu
    Wu, Lianlian
    He, Song
    Bo, Xiaochen
    Zhang, Zhongnan
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 947 - 954
  • [34] Drug-target binding affinity prediction using message passing neural network and self supervised learning
    Xia, Leiming
    Xu, Lei
    Pan, Shourun
    Niu, Dongjiang
    Zhang, Beiyi
    Li, Zhen
    BMC GENOMICS, 2023, 24 (01)
  • [35] Drug-target binding affinity prediction using message passing neural network and self supervised learning
    Leiming Xia
    Lei Xu
    Shourun Pan
    Dongjiang Niu
    Beiyi Zhang
    Zhen Li
    BMC Genomics, 24
  • [36] MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction
    Yang, Ziduo
    Zhong, Weihe
    Zhao, Lu
    Chen, Calvin Yu-Chian
    CHEMICAL SCIENCE, 2022, 13 (03) : 816 - 833
  • [37] Integrating sequence and graph information for enhanced drug-target affinity prediction
    Haohuai HE
    Guanxing CHEN
    Calvin Yu-Chian CHEN
    ScienceChina(InformationSciences), 2024, 67 (02) : 325 - 326
  • [38] SAM-DTA: a sequence -agnostic model for drug-target binding affinity prediction
    Hu, Zhiqiang
    Liu, Wenfeng
    Zhang, Chenbin
    Huang, Jiawen
    Zhang, Shaoting
    Yu, Huiqun
    Xiong, Yi
    Liu, Hao
    Ke, Song
    Hong, Liang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [39] A Multibranch Neural Network for Drug-Target Affinity Prediction Using Similarity Information
    Chen, Jing
    Yang, Xiaolin
    Wu, Haoyu
    ACS OMEGA, 2024, 9 (33): : 35978 - 35989
  • [40] Hierarchical graph representation learning for the prediction of drug-target binding affinity
    Chu, Zhaoyang
    Huang, Feng
    Fu, Haitao
    Quan, Yuan
    Zhou, Xionghui
    Liu, Shichao
    Zhang, Wen
    INFORMATION SCIENCES, 2022, 613 : 507 - 523