Few-Shot-Learning for Scar Recognition: A CNN-based Binary Classification Approach

被引:0
|
作者
An, Dong-Ju [1 ]
Yoo, In-Sang [1 ]
Jo, Jeong-Min [1 ]
Lee, Woo-Jeong [1 ]
Yu, Hye-Jin [1 ]
Park, Seung [1 ]
机构
[1] Chungbuk Natl Univ Hosp, Dept Biomed Engn, Cheongju, South Korea
关键词
CNN; Few-Shot Learning; Scar Recognition; Deep Learning; Image Classification;
D O I
10.1109/ITC-CSCC62988.2024.10628140
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Scar recognition is crucial issue in various medical fields, such as dermatology and plastic surgery. Conventional approaches to scar recognition often require large labeled datasets for effective training, which can be challenging to obtain due to the variability and diversity of scar patterns. In this paper, we propose a novel approach combining Convolutional Neural Networks ( CNNs) with few-shot learning techniques for scar recognition. By leveraging the feature extraction capabilities of CNNs and the generalization ability of few-shot learning from small amounts of data, this method demonstrates promising results in binary scar classification. This offers potential applicability beyond typical scars, catering to a wide range of scar types in both clinical and everyday settings. Such findings could contribute to enhancing medical efficiency in the field, aiding specialists in effectively devising personalized scar treatment plans for patients.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A CNN-Based Transfer Learning Method for Defect Classification in Semiconductor Manufacturing
    Imoto, Kazunori
    Nakai, Tomohiro
    Ike, Tsukasa
    Haruki, Kosuke
    Sato, Yoshiyuki
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2019, 32 (04) : 455 - 459
  • [32] A Few-shot Learning Approach for Historical Ciphered Manuscript Recognition
    Souibgui, Mohamed Ali
    Fornes, Alicia
    Kessentini, Yousri
    Tudor, Crina
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5413 - 5420
  • [33] CNN-based hybrid deep learning framework for human activity classification
    Ahmad, Naeem
    Ghosh, Sunit
    Rout, Jitendra Kumar
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2024, 44 (02) : 74 - 83
  • [34] Classification of Marine Plankton Based on Few-shot Learning
    Guo, Jin
    Guan, Jihong
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (09) : 9253 - 9262
  • [35] Classification of Marine Plankton Based on Few-shot Learning
    Jin Guo
    Jihong Guan
    Arabian Journal for Science and Engineering, 2021, 46 : 9253 - 9262
  • [36] Few-shot ship classification based on metric learning
    You Zhou
    Changlin Chen
    Shukun Ma
    Multimedia Systems, 2023, 29 : 2877 - 2886
  • [37] TIRE PATTERN CLASSIFICATION BASED ON FEW-SHOT LEARNING
    Yan, Jingwen
    Zhu, Yuting
    Liang, Zili
    Zhu, Yisheng
    Wu, Keer
    Lin, Zhinan
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [38] Skin Lesion Classification Using CNN-based Transfer Learning Model
    Dimililer, Kamil
    Sekeroglu, Boran
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 660 - 673
  • [39] Few-shot classification based on manifold metric learning
    Shang, Qingzhen
    Yang, Jinfu
    Ma, Jiaqi
    Zhang, Jiahui
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (01)
  • [40] Few-shot ship classification based on metric learning
    Zhou, You
    Chen, Changlin
    Ma, Shukun
    MULTIMEDIA SYSTEMS, 2021, 29 (5) : 2877 - 2886