Few-Shot-Learning for Scar Recognition: A CNN-based Binary Classification Approach

被引:0
|
作者
An, Dong-Ju [1 ]
Yoo, In-Sang [1 ]
Jo, Jeong-Min [1 ]
Lee, Woo-Jeong [1 ]
Yu, Hye-Jin [1 ]
Park, Seung [1 ]
机构
[1] Chungbuk Natl Univ Hosp, Dept Biomed Engn, Cheongju, South Korea
关键词
CNN; Few-Shot Learning; Scar Recognition; Deep Learning; Image Classification;
D O I
10.1109/ITC-CSCC62988.2024.10628140
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Scar recognition is crucial issue in various medical fields, such as dermatology and plastic surgery. Conventional approaches to scar recognition often require large labeled datasets for effective training, which can be challenging to obtain due to the variability and diversity of scar patterns. In this paper, we propose a novel approach combining Convolutional Neural Networks ( CNNs) with few-shot learning techniques for scar recognition. By leveraging the feature extraction capabilities of CNNs and the generalization ability of few-shot learning from small amounts of data, this method demonstrates promising results in binary scar classification. This offers potential applicability beyond typical scars, catering to a wide range of scar types in both clinical and everyday settings. Such findings could contribute to enhancing medical efficiency in the field, aiding specialists in effectively devising personalized scar treatment plans for patients.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Improving CNN-based activity recognition by data augmentation and transfer learning
    Kalouris, Gerasimos
    Zacharaki, Evangelia I.
    Megalooikonomou, Vasileios
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1387 - 1394
  • [22] CNN-based glioma detection in MRI: A deep learning approach
    Wang, Jing
    Yin, Liang
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (06) : 4965 - 4982
  • [23] MISCNN : A Novel Learning Scheme for CNN-Based Network Traffic Classification
    Baek, Ui-Jun
    Kim, Boseon
    Park, Jee-Tae
    Choi, Jeong-Woo
    Kim, Myung-Sup
    2022 23RD ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS 2022), 2022, : 19 - 24
  • [24] Radar target recognition based on few-shot learning
    Yang, Yue
    Zhang, Zhuo
    Mao, Wei
    Li, Yang
    Lv, Chengang
    MULTIMEDIA SYSTEMS, 2023, 29 (05) : 2865 - 2875
  • [25] Radar target recognition based on few-shot learning
    Yue Yang
    Zhuo Zhang
    Wei Mao
    Yang Li
    Chengang Lv
    Multimedia Systems, 2023, 29 : 2865 - 2875
  • [26] CNN-Based Broad Learning for Cross-Domain Emotion Classification
    Zeng, Rong
    Liu, Hongzhan
    Peng, Sancheng
    Cao, Lihong
    Yang, Aimin
    Zong, Chengqing
    Zhou, Guodong
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (02): : 360 - 369
  • [27] Modulation format recognition using CNN-based transfer learning models
    Mohamed, Safie El-Din Nasr
    Mortada, Bidaa
    Ali, Anas M.
    El-Shafai, Walid
    Khalaf, Ashraf A. M.
    Zahran, O.
    Dessouky, Moawad I.
    El-Rabaie, El-Sayed M.
    El-Samie, Fathi E. Abd
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)
  • [28] Modulation format recognition using CNN-based transfer learning models
    Safie El-Din Nasr Mohamed
    Bidaa Mortada
    Anas M. Ali
    Walid El-Shafai
    Ashraf A. M. Khalaf
    O. Zahran
    Moawad I. Dessouky
    El-Sayed M. El-Rabaie
    Fathi E. Abd El-Samie
    Optical and Quantum Electronics, 2023, 55
  • [29] Comparison of CNN-based deep learning architectures for rice diseases classification
    Ahad, Md Taimur
    Li, Yan
    Song, Bo
    Bhuiyan, Touhid
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2023, 9 : 22 - 35
  • [30] A CNN-based Transfer Learning Method for Defect Classification in Semiconductor Manufacturing
    Imoto, Kazunori
    Nakai, Tomohiro
    Ike, Tsukasa
    Haruki, Kosuke
    Sato, Yoshiyuki
    2018 INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR MANUFACTURING (ISSM), 2018,