Machine learning model using heart rate variability for the prediction of vasovagal syncope

被引:0
|
作者
Cho, J. H. [1 ]
机构
[1] Chung Ang Univ, Gwangmyeong Hosp, Seoul, South Korea
关键词
D O I
10.1093/eurheartj/ehae666.3457
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Heart rate variability in children with neurocardiogenic syncope
    Zygmunt, A
    Stanczyk, J
    CLINICAL AUTONOMIC RESEARCH, 2004, 14 (02) : 99 - 106
  • [42] Heart rate variability in children with neurocardiogenic syncope
    Agnieszka Zygmunt
    Jerzy Stanczyk
    Clinical Autonomic Research, 2004, 14 : 99 - 106
  • [43] Simultaneous analysis of heart rate variability and myocardial contractility during head-up tilt in patients with vasovagal syncope
    Mangin, L
    Kobeissi, A
    Lelouche, D
    D'Hérouville, Y
    Mansier, P
    Swynghedauw, B
    Macquin-Mavier, I
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2001, 12 (06) : 639 - 644
  • [44] Predictive model of cardiac arrest in smokers using machine learning technique based on Heart Rate Variability parameter
    Shashikant, R.
    Chetankumar, P.
    APPLIED COMPUTING AND INFORMATICS, 2023, 19 (3-4) : 174 - 185
  • [45] Machine Learning Methods for Neonatal Heart Rate Prediction using Respiratory Signals
    Yusran, Maharaj Faawwaz A.
    Azzman, Tengku Ahmad Naim Tengku Mohd
    Saw, Shier Nee
    Hasan, Zati Hakim Azizul
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 334 - 338
  • [46] An assessment of heart rate and blood pressure asymmetry in the diagnosis of vasovagal syncope in females
    Pawlowski, Rafal
    Zalewski, Pawel
    Newton, Julia
    Piatkowska, Agnieszka
    Kozluk, Edward
    Opolski, Grzegorz
    Buszko, Katarzyna
    FRONTIERS IN PHYSIOLOGY, 2023, 13
  • [47] Heart Disease Prediction Using Logistic Regression Machine Learning Model
    Hrvat, Faris
    Spahic, Lemana
    Aleta, Amina
    MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 654 - 662
  • [48] Prediction Model Using Machine Learning for Mortality in Patients with Heart Failure
    Negassa, Abdissa
    Ahmed, Selim
    Zolty, Ronald
    Patel, Snehal R.
    AMERICAN JOURNAL OF CARDIOLOGY, 2021, 153 : 86 - 93
  • [49] Stacking Model for Heart Stroke Prediction using Machine Learning Techniques
    Mohapatra S.
    Mishra I.
    Mohanty S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [50] The pattern of heart rate changes after vasovagal syncope reflects the different activation of renin-angiotensin-aldosterone system in patients with vasovagal syncope
    Gajek, J.
    Zysko, D.
    Mazurek, W.
    EUROPEAN HEART JOURNAL, 2007, 28 : 641 - 641