Machine learning model using heart rate variability for the prediction of vasovagal syncope

被引:0
|
作者
Cho, J. H. [1 ]
机构
[1] Chung Ang Univ, Gwangmyeong Hosp, Seoul, South Korea
关键词
D O I
10.1093/eurheartj/ehae666.3457
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Vagal control of heart rate variability in vasovagal syncope: Studies based on 24-h electrocardiogram recordings
    Lagi, A
    Tamburini, C
    Cipriani, M
    Fattorini, L
    CLINICAL AUTONOMIC RESEARCH, 1997, 7 (03) : 127 - 130
  • [32] Review Article: Heart Rate and Blood Pressure Control in Vasovagal Syncope
    Benditt D.G.
    Fabian W.
    Iskos D.
    Lurie K.G.
    Journal of Interventional Cardiac Electrophysiology, 1997, 2 (1) : 25 - 32
  • [33] Vagal control of heart rate variability in vasovagal syncope: Studies based on 24-h electrocardiogram recordings
    A. Lagi
    C. Tamburini
    M. Cipriani
    L. Fattorini
    Clinical Autonomic Research, 1997, 7 : 127 - 130
  • [34] Autonomic control of heart rate variability in vasovagal syncope: A study of the nighttime period in 24-hour recordings
    Alfonso Lagi
    Carlo Tamburini
    Lamberto Fattorini
    Simone Cencetti
    Clinical Autonomic Research, 1999, 9 : 179 - 183
  • [35] Predicting the outcome of head-up tilt test using heart rate variability and baroreflex sensitivity parameters in patients with vasovagal syncope
    Matjaž Klemenc
    Erik Štrumbelj
    Clinical Autonomic Research, 2015, 25 : 391 - 398
  • [36] Heart Disease Prediction using Hybrid machine Learning Model
    Kavitha, M.
    Gnaneswar, G.
    Dinesh, R.
    Sai, Y. Rohith
    Suraj, R. Sai
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 1329 - 1333
  • [37] Predicting the outcome of head-up tilt test using heart rate variability and baroreflex sensitivity parameters in patients with vasovagal syncope
    Klemenc, Matjaz
    Strumbelj, Erik
    CLINICAL AUTONOMIC RESEARCH, 2015, 25 (06) : 391 - 398
  • [38] HEART-RATE-VARIABILITY IN PATIENTS WITH VASOVAGAL SYNDROME
    THEODORAKIS, GN
    KREMASTINOS, DT
    AVRAMBOS, GT
    STEFANAKIS, GS
    KARAVOLIAS, GK
    TOUTOUZAS, PK
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1992, 15 (11): : 2221 - 2225
  • [39] A deep learning model for prediction of chemotherapy infusion related symptoms using continuous heart rate variability
    Ahn, H.
    Park, J-H.
    Yoo, K. H.
    Yeo, J. H.
    Lee, S. J.
    Park, J. S.
    Um, J.
    ANNALS OF ONCOLOGY, 2022, 33 (07) : S1264 - S1264
  • [40] A Study on QoE Estimation from Heart Rate Variability Using Machine Learning
    Ota, K.
    Hiraguri, T.
    Yoshino, H.
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW), 2018,