Improving Image Synthesis Quality in Multi-Contrast MRI Using Transfer Learning via Autoencoders

被引:0
|
作者
Selcuk, Saban Yoruc [1 ,2 ]
Dalmaz, Onat [1 ,2 ]
Dar, Salman ul Hassan [1 ,2 ]
Cukur, Tolga [1 ,2 ,3 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, Ankara, Turkey
[2] Bilkent Univ, Natl Magnet Resonance Res Ctr, Ankara, Turkey
[3] Bilkent Univ, Sabuncu Brain Res Ctr, Neurosci Program, Ankara, Turkey
关键词
Multi-contrast MRI; autoencoder; transfer learning; generative adversarial networks;
D O I
10.1109/SIU55565.2022.9864750
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The capacity of magnetic resonance imaging (MRI) to capture several contrasts within a session enables it to obtain increased diagnostic information. However, such multi-contrast MRI tests take a long time to scan, resulting in acquiring just a part of the essential contrasts. Synthetic multi-contrast MRI has the potential to improve radiological observations and consequent image analysis activities. Because of its ability to generate realistic results, generative adversarial networks (GAN) have recently been the most popular choice for medical imaging synthesis. This paper proposes a novel generative adversarial framework to improve the image synthesis quality in multi-contrast MRI. Our method uses transfer learning to adapt pre-trained autoencoder networks to the synthesis task and enhances the image synthesis quality by initializing the training process with more optimal network parameters. We demonstrate that the proposed method outperforms competing synthesis models by 0.95 dB on average on a well-known multi-contrast MRI dataset.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Bridging MRI Cross-Modality Synthesis and Multi-Contrast Super-Resolution by Fine-Grained Difference Learning
    Feng, Yidan
    Deng, Sen
    Lyu, Jun
    Cai, Jing
    Wei, Mingqiang
    Qin, Jing
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 373 - 383
  • [42] Multi-task deep learning for classifying cerebrovascular diseases and synthesizing PET from multi-contrast MRI
    Hussein, R.
    Zhao, M.
    Shin, D.
    Guo, J.
    Zaharchuk, G.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2022, 42 (1_SUPPL): : 63 - 64
  • [43] Multi-Contrast Brain MRI Image Super-Resolution With Gradient-Guided Edge Enhancement
    Zheng, Hong
    Zeng, Kun
    Guo, Di
    Ying, Jiaxi
    Yang, Yu
    Peng, Xi
    Huang, Feng
    Chen, Zhong
    Qu, Xiaobo
    IEEE ACCESS, 2018, 6 : 57856 - 57867
  • [44] Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations
    McGinnis, Julian
    Shit, Suprosanna
    Li, Hongwei Bran
    Sideri-Lampretsa, Vasiliki
    Graf, Robert
    Dannecker, Maik
    Pan, Jiazhen
    Stolt-Anso, Nil
    Muehlau, Mark
    Kirschke, Jan S.
    Rueckert, Daniel
    Wiestler, Benedikt
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VIII, 2023, 14227 : 173 - 183
  • [45] Compressed Multi-Contrast Magnetic Resonance Image Reconstruction using Augmented Lagrangian Method
    Gungor, Alper
    Kopanoglu, Emre
    Cukur, Tolga
    Guven, H. Emre
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1985 - 1988
  • [46] Multi-contrast and three-dimensional assessment of the aortic wall using 3 T MRI
    Wehrum, Thomas
    Dragonu, Iulius
    Strecker, Christoph
    Hennig, Juergen
    Harloff, Andreas
    EUROPEAN JOURNAL OF RADIOLOGY, 2017, 91 : 148 - 154
  • [47] Brain plasticity dynamics during tactile Braille learning in sighted subjects: Multi-contrast MRI approach
    Matuszewski, Jacek
    Kossowski, Bartosz
    Bola, Lukasz
    Banaszkiewicz, Anna
    Paplinska, Malgorzata
    Gyger, Lucien
    Kherif, Ferath
    Szwed, Marcin
    Frackowiak, Richard S.
    Jednorog, Katarzyna
    Draganski, Bogdan
    Marchewka, Artur
    NEUROIMAGE, 2021, 227
  • [48] Multi-tissue partial volume quantification in multi-contrast MRI using an optimised spectral unmixing approach
    Collewet, Guylaine
    Moussaoui, Said
    Deligny, Cecile
    Lucas, Tiphaine
    Idier, Jerome
    MAGNETIC RESONANCE IMAGING, 2018, 49 : 39 - 46
  • [49] Assessing the efficacy of 3D Dual-CycleGAN model for multi-contrast MRI synthesis
    Mahboubisarighieh, Ali
    Shahverdi, Hossein
    Nesheli, Shabnam Jafarpoor
    Kermani, Mohammad Alipoor
    Niknam, Milad
    Torkashvand, Mohanna
    Rezaeijo, Seyed Masoud
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2024, 55 (01):
  • [50] Direct synthesis of multi-contrast brain MR images from MR multitasking spatial factors using deep learning
    Qiu, Shihan
    Ma, Sen
    Wang, Lixia
    Chen, Yuhua
    Fan, Zhaoyang
    Moser, Franklin G.
    Maya, Marcel
    Sati, Pascal
    Sicotte, Nancy L.
    Christodoulou, Anthony G.
    Xie, Yibin
    Li, Debiao
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (04) : 1672 - 1681