Improving Image Synthesis Quality in Multi-Contrast MRI Using Transfer Learning via Autoencoders

被引:0
|
作者
Selcuk, Saban Yoruc [1 ,2 ]
Dalmaz, Onat [1 ,2 ]
Dar, Salman ul Hassan [1 ,2 ]
Cukur, Tolga [1 ,2 ,3 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, Ankara, Turkey
[2] Bilkent Univ, Natl Magnet Resonance Res Ctr, Ankara, Turkey
[3] Bilkent Univ, Sabuncu Brain Res Ctr, Neurosci Program, Ankara, Turkey
关键词
Multi-contrast MRI; autoencoder; transfer learning; generative adversarial networks;
D O I
10.1109/SIU55565.2022.9864750
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The capacity of magnetic resonance imaging (MRI) to capture several contrasts within a session enables it to obtain increased diagnostic information. However, such multi-contrast MRI tests take a long time to scan, resulting in acquiring just a part of the essential contrasts. Synthetic multi-contrast MRI has the potential to improve radiological observations and consequent image analysis activities. Because of its ability to generate realistic results, generative adversarial networks (GAN) have recently been the most popular choice for medical imaging synthesis. This paper proposes a novel generative adversarial framework to improve the image synthesis quality in multi-contrast MRI. Our method uses transfer learning to adapt pre-trained autoencoder networks to the synthesis task and enhances the image synthesis quality by initializing the training process with more optimal network parameters. We demonstrate that the proposed method outperforms competing synthesis models by 0.95 dB on average on a well-known multi-contrast MRI dataset.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] A review of deep learning-based reconstruction methods for accelerated MRI using spatiotemporal and multi-contrast redundancies
    Kim, Seonghyuk
    Park, HyunWook
    Park, Sung-Hong
    BIOMEDICAL ENGINEERING LETTERS, 2024, 14 (06) : 1221 - 1242
  • [32] Semi-Supervised Deep Learning for Multi-Tissue Segmentation from Multi-Contrast MRI
    Syed Muhammad Anwar
    Ismail Irmakci
    Drew A. Torigian
    Sachin Jambawalikar
    Georgios Z. Papadakis
    Can Akgun
    Jutta Ellermann
    Mehmet Akcakaya
    Ulas Bagci
    Journal of Signal Processing Systems, 2022, 94 : 497 - 510
  • [33] Semi-Supervised Deep Learning for Multi-Tissue Segmentation from Multi-Contrast MRI
    Anwar, Syed Muhammad
    Irmakci, Ismail
    Torigian, Drew A.
    Jambawalikar, Sachin
    Papadakis, Georgios Z.
    Akgun, Can
    Ellermann, Jutta
    Akcakaya, Mehmet
    Bagci, Ulas
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (05): : 497 - 510
  • [34] Rapid simultaneous estimation of relaxation rates using multi-echo, multi-contrast MRI
    Keeling, Elizabeth G.
    Sisco, Nicholas J.
    Mcelvogue, Molly M.
    Borazanci, Aimee
    Dortch, Richard D.
    Stokes, Ashley M.
    MAGNETIC RESONANCE IMAGING, 2024, 112 : 116 - 127
  • [35] Fill the K-Space and Refine the Image: Prompting for Dynamic and Multi-Contrast MRI Reconstruction
    Xin, Bingyu
    Ye, Meng
    Axel, Leon
    Metaxas, Dimitris N.
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. REGULAR AND CMRXRECON CHALLENGE PAPERS, STACOM 2023, 2024, 14507 : 261 - 273
  • [36] Multi-contrast MR image denoising for parallel imaging using multilayer perceptron
    Kwon, Kinam
    Kim, Dongchan
    Park, HyunWook
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2016, 26 (01) : 65 - 75
  • [37] Multi-contrast image clustering via multi-resolution augmentation and momentum-output queues
    Jin, Sheng
    Zhou, Shuisheng
    Kong, Dezheng
    Han, Banghe
    NEUROCOMPUTING, 2025, 614
  • [38] Predicting FDG-PET Images From Multi-Contrast MRI Using Deep Learning in Patients With Brain Neoplasms
    Ouyang, Jiahong
    Chen, Kevin T. T.
    Armindo, Rui Duarte
    Davidzon, Guido Alejandro
    Hawk, Kristina Elizabeth
    Moradi, Farshad
    Rosenberg, Jarrett
    Lan, Ella
    Zhang, Helena
    Zaharchuk, Greg
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 59 (03) : 1010 - 1020
  • [39] Bottleneck Sharing Generative Adversarial Networks for Unified Multi-Contrast MR Image Synthesis
    Dalmaz, Onat
    Saglam, Baturay
    Gonc, Kaan
    Dar, Salman U. H.
    Cukur, Tolga
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [40] Simultaneously optimizing sampling pattern for joint acceleration of multi-contrast MRI using model-based deep learning
    Seo, Sunghun
    Luu, Huan Minh
    Choi, Seung Hong
    Park, Sung-Hong
    MEDICAL PHYSICS, 2022, 49 (09) : 5964 - 5980