Leibniz rules for fractional derivatives of non-differentiable functions

被引:0
|
作者
Kostic, Marko [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Trg D Obradovica 6, Novi Sad 21125, Serbia
关键词
Leibniz rules for fractional derivatives; generalized Laplace fractional derivatives; Prabhakar fractional derivatives; generalized Hilfer (a; b; alpha)-fractional derivatives; EQUATIONS;
D O I
10.1080/10652469.2024.2414806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine Leibniz rules for generalized Laplace fractional derivatives and some special kinds of fractional derivatives, including generalized Hilfer (a, b, alpha)-derivatives and Prabhakar derivatives. We focus our attention to analysis of Leibniz rules for fractional derivatives of non-differentiable functions.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [32] ON WEIERSTRASS NON-DIFFERENTIABLE FUNCTION
    HATA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 119 - 123
  • [33] Renormalisation of non-differentiable potentials
    J. Alexandre
    N. Defenu
    G. Grigolia
    I. G. Márián
    D. Mdinaradze
    A. Trombettoni
    Y. Turovtsi-Shiutev
    I. Nándori
    Journal of High Energy Physics, 2022
  • [34] GLOBAL ASYMPTOTIC STABILITY OF NONLINEAR DIFFERENCE - EQUATIONS WITH NON-DIFFERENTIABLE FUNCTIONS
    SZIDAROVSZKY, F
    ECONOMICS LETTERS, 1990, 33 (04) : 333 - 336
  • [35] On the structure of the critical set of non-differentiable functions with a weak compactness condition
    Bonanno, Gabriele
    Marano, Salvatore A.
    APPLICABLE ANALYSIS, 2010, 89 (01) : 1 - 10
  • [36] Non-Differentiable Functions Defined in Terms of Classical Representations of Real Numbers
    Serbenyuk, S. O.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2018, 14 (02) : 197 - 213
  • [37] Isotonic Modeling with Non-Differentiable Loss Functions with Application to Lasso Regularization
    Painsky, Amichai
    Rosset, Saharon
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 308 - 321
  • [38] Non-differentiable symmetric duality
    Mond, B
    Schechter, M
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (02) : 177 - 188
  • [39] Renormalisation of non-differentiable potentials
    Alexandre, J.
    Defenu, N.
    Grigolia, G.
    Marian, I. G.
    Mdinaradze, D.
    Trombettoni, A.
    Turovtsi-Shiutev, Y.
    Nandori, I
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (07)
  • [40] THERMODYNAMICS OF NON-DIFFERENTIABLE SYSTEMS
    BOYLING, JB
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (06) : 379 - 392